1. Agresti 1.1
(a) Nominal
(b) Ordinal
(c) Interval
(d) Nominal
(e) Ordinal
(f) Nominal

2. Agresti 1.2

a.) $\mathrm{X}=$ number of correct answers, $X \sim \operatorname{Binom}(n=100, \pi=0.25)$
b.) $E[X]=n \times \pi=100(0.25)=25 ; \operatorname{Var}[X]=n \times \pi \times(1-\pi)=100(0.25)(1-$
$0.25)=18.75$;
Yes, 50 correct responses would be surprising, since 50 is $z=(50-25) / 4.33=5.8$ standard deviations above the mean of a distribution that is approximately normal.
c.) The distribution of ($n_{1}, n_{2}, n_{3}, n_{4}$) is multinomial $\left(\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}\right)$ where $\pi_{j}=$ 0.25 .
d.) $E\left[n_{j}\right]=n \times \pi_{j}=0.25 ; \operatorname{Var}\left[n_{j}\right]=n \times \pi_{j} \times\left(1-\pi_{j}\right)=100(0.25)(1-0.25)=$ 18.75; $\operatorname{Cov}\left(n_{j}, n_{k}\right)=-n \times \pi_{j} \times p i_{k}=-100(0.25)(0.25)=-6.25 ; \operatorname{Corr}\left(n_{j}, n_{k}\right)=$ $\frac{\operatorname{Cov}\left(n_{j}, n_{k}\right)}{\operatorname{Var}\left(n_{j}\right) \times \operatorname{Var}\left(n_{k}\right)}=\frac{-6.25}{18.75}=-0.333$.
3. Agresti 1.4
a.) $\mathrm{X}=$ number of games with no bullets fired, $P(X=0)=\binom{n}{k}(\pi)^{k}(1-\pi)^{n-k}=$ $\binom{6}{0}\left(\frac{1}{6}\right)^{k}\left(1-\frac{1}{6}\right)^{6-0}=\frac{5}{6}^{6}=0.3349 \quad$,Which follows the geometric distribution.
b.) $\mathrm{Y}=$ number of games until bullet fires,

$$
\begin{gathered}
P(Y=1)=\frac{1}{6} \\
P(Y=2)=\frac{5}{6} \times \frac{1}{6} \\
P(Y=3)=\frac{5}{6}^{2} \times \frac{1}{6} \\
P(Y=4)=\frac{5^{4-1}}{6} \times \frac{1}{6} \\
\vdots \\
P(Y=n)=\frac{5}{6}^{y-1} \times \frac{1}{6}
\end{gathered}
$$

This is because each round is independent and every previous round has no bullet fire with probability $\frac{5}{6}$.
4. Agresti 1.5 Let π be the proportion who say yes, $N=587+636$, and $H_{0}: \pi=0.5$. I used R to do the score test, but will show how to calculate z_{s} :

$$
\begin{gathered}
z_{s}=\frac{\hat{\pi}-\pi_{0}}{\sqrt{\pi_{0}\left(1-\pi_{0}\right) / n}}=\frac{\frac{587}{587+636}-0.5}{\sqrt{\frac{0.25}{587+636}}}=-1.401 \\
P\left(z_{s}^{2}=\chi_{1}^{2}>-1.401\right)=0.1612
\end{gathered}
$$

$\pi \pm 1.96 * \operatorname{sqrt}\left(\pi^{*}(1-\pi) / N\right)=0.479 \pm 0.028$
the CI: $(0.452,0.508)$. We fail to reject the null hypothesis; we do not have sufficient evidence to conclude that the majority of people think that it should be possible
for a pregnant woman to obtain a legal abortion if she is married and does not want any more children. We are 95% confident the true proportion falls between 45.2% and 50.8% (since 0.5 is contained within this interval, that is why we failed to reject H_{0}.
\#\# EX1 Problem 1.5 \#\#
y <-587
$\mathrm{n}<-587+636$
\#\# score test
test_score <- prop.test $(y, n$, conf. level $=0.95$, correct=F)
\#\#The confidence interval is computed by inverting the score test.
5. Agresti 1.6
a.) $\operatorname{LRT}=2\left[y \log \left(\frac{y}{.5 n}\right)+(n-y) \log \left(\frac{n-y}{(1-0.5) n}\right)\right]=2\left[25 \log \left(\frac{25}{0.5(25)}\right)\right]=34.7$
b.) $\chi^{2}=\frac{(25-25)^{2}}{25}+\frac{(0-25)^{2}}{25}=\frac{-25^{2}}{25}=25$
c.) $z_{w}=\frac{\hat{\pi}-\pi_{0}}{\sqrt{\hat{\pi}(1-\hat{\pi}) / n}}$ is undefined since $\hat{\pi}=0$, and then $z_{w}=\frac{-0.5}{0}=\infty$
6. Agresti 1.7
a.)

This likelihood function is not quadratic since it is to the twentieth power.
b.) $\hat{\pi}=1$ maximizes $L(\pi) . \quad z_{w}=\frac{\hat{\pi}-\pi_{0}}{\sqrt{\pi(1-\tilde{\pi}) / n}}=\frac{1-0.5}{\sqrt{\frac{1(0)}{20}}}$, which is not defined. Additionally, $\hat{\pi} \pm 1.96 \sqrt{\frac{\pi(1-\pi)}{20}}=1 \pm 1.96(0)=(1,1)$, which does not make sense.

$$
\dot{z}=(1.0-.5) / \sqrt{.5(.5) / 20}=4.47, P<.0001 \text {. Score CI is }(0.839,1.000)
$$

d.)

$$
\begin{align*}
L R T & =2\left[20 \log \frac{20}{.5(20)}+(20-20) \log \frac{20-20}{.5(20)}\right] \\
& =2(20) \log \frac{20}{10} \tag{2}\\
& =27.7
\end{align*}
$$

This test statistic has one degree of freedom.
stat $<-2 * 20 * \log (2)$
stat
1-pchisq(stat, 1)

The p-value is 1.3978×10^{-7}. We reject the null hypothesis and find the same conclusion as in 1.7c. From the example on page 16 in the textbook I constructed
the confidence interval: We know the upper bound is 1 and the lower bound is $\exp \frac{3.84}{2 \times 20}=0.908$.
e.) I constructed the exact binomial test using R. We find p-value $=1.907 \times$ 10^{-6}, so we reject the null hypothesis and conclude similarly to 1.7 c . \square
7. Agresti 1.9 For this problem, I used a χ^{2} goodness-of-fit test to see is $3: 1$ was the true ratio of green to yellow seedlings.

$$
\chi_{G O F}^{2}=\Sigma_{j=1}^{2} \frac{\left(n_{j}-\mu_{j}\right)^{2}}{\mu_{j}}=\frac{(854-827.25)^{2}}{827.25}+\frac{(249-275.75)^{2}}{275.75}
$$

where the μ_{j} 's were computed by $n \times 0.75$ or $\times 0.25, n=1103$. Using R ,

```
chisq.test(c(854,249),p=c(.75,.25))
```

Then the P -value is 0.063 , providing moderate evidence against the null (if we set $\alpha=0.05$, it fails to reject null hypothesis whereas if we set $\alpha=0.10$, it rejects the null and conclude the alternative).
8. Question 8 From the question, we know $n=100$ and we want to test $H_{0}: \pi=0.5$ versus $H_{A}: \pi>0.5$ where π is the proportion of women who improve on the new drug. I used a score test in R and found p -value $=0.02275$. We reject the null hypothesis; we have sufficient evidence to conclude the new drug is better. We are 95% confident that the true proportion of women who improve on the new drug is between 51.7% and 100%.
prop.test $(60,100, p=.5$, alternative="greater", conf. level $=0.95$, correction $=F)$
9. Agresti 1.17
a.) $Y \sim \operatorname{Binomial}(n, \pi), E[Y]=n \pi, \operatorname{Var}[Y]=n \pi(1-\pi)$.
b.)

Proof.

$$
\begin{aligned}
\operatorname{Var}[Y] & =\sum \operatorname{Var}\left[Y_{i}\right]+2 \sum \operatorname{Cov}\left[Y_{i}, Y_{j}\right] \\
& =n \pi(1-\pi)+2 \rho \pi(1-\pi) \\
& >n \pi(1-\pi)
\end{aligned}
$$

c.) Theorem: Suppose $P\left(Y_{i}=1 \mid \pi\right)=\pi \forall i$, but $\pi \sim g(\mathrm{ffl})$ on $[0,1]$ having mean ρ and positive variance. WTS $\operatorname{Var}[Y]>n \rho(1-\rho)$.

Proof.

$$
\begin{aligned}
\operatorname{Var}[Y] & =E[\operatorname{Var}[Y \mid \pi]]+\operatorname{Var}[E[Y \mid \pi]] \\
& =n E[\pi]-n E\left[\pi^{2}\right]+n^{2} \operatorname{Var}[\pi] \\
& =n \rho-n\left(\operatorname{Var}[\pi]+\rho^{2}\right)+n^{2} \operatorname{Var}[\pi] \\
& =n \rho-n \rho^{2}+\left(n^{2}-n\right) \operatorname{Var}[\pi] \\
& =n \rho(1-\rho)+\left(n^{2}-n\right) \operatorname{Var}[\pi] \\
& >n \rho(1-\rho)
\end{aligned}
$$

10. Agresti 1.29
a.)

Proof.

$$
\begin{aligned}
& L(\theta)=n_{1} \log \theta^{2}+n_{2} \log [2 \theta(1-\theta)]+n_{3} \log (1-\theta)^{2} \\
& \begin{aligned}
&=2 n_{1} \log \theta+n_{2} \log 2 \theta+n_{2} \log (1-\theta)+2 n_{3} \log (1-\theta) \\
& \frac{\partial L(\theta)}{\partial \theta}=\frac{2 n_{1} \theta}{\theta^{2}}+\frac{2 n_{2}}{2 \theta}-\frac{n_{2}}{1-\theta}-\frac{2 n_{3}}{1-\theta} \\
&=\frac{2 n_{1}+n_{2}}{\theta}-\frac{n_{2}+2 n_{3}}{1-\theta}=0 \\
& \Longrightarrow \frac{2 n_{1}+n_{2}}{\theta}=\frac{n_{2}+2 n_{3}}{1-\theta} \\
& \Longrightarrow\left(2 n_{1}+n_{2}\right)(1-\theta)=\left(n_{2}+2 n_{3}\right) \theta \\
& \Longrightarrow 2 n_{1}+n_{2}-2 n_{1} \theta n_{2} \theta=n_{2} \theta+2 n_{3} \theta \\
& \Longrightarrow 2 n_{1}+n_{2}=n_{2} \theta+n_{2} \theta+2 n_{1} \theta+2 n_{3} \theta \\
& \Longrightarrow \hat{\theta}=\frac{2 n_{1}+n_{2}}{2 n_{1}+2 n_{2}+2 n_{3}}
\end{aligned}
\end{aligned}
$$

b.)

Proof.

$$
\begin{aligned}
\frac{\partial^{2} L(\theta)}{\partial \theta^{2}} & =\frac{\partial}{\partial \theta}\left[\frac{2 n_{1} \theta}{\theta^{2}}+\frac{2 n_{2}}{2 \theta}-\frac{n_{2}}{1-\theta}-\frac{2 n_{3}}{1-\theta}\right] \\
& =2 n_{1}+n_{2} \frac{-1}{\theta^{2}}-\left(n_{2}+2 n_{3}\right) \frac{-1}{(1-\theta)^{2}} \\
& =\frac{n_{2}+2 n_{3}}{(1-\theta)^{2}}-\frac{\left(2 n_{1}+n_{2}\right)}{\theta^{2}}
\end{aligned}
$$

from a.)

Then,

$$
\frac{-\partial^{2} L(\theta)}{\partial \theta^{2}}=\frac{\left(2 n_{1}+n_{2}\right)}{\theta^{2}}-\frac{n_{2}+2 n_{3}}{(1-\theta)^{2}}
$$

Then,

$$
\begin{aligned}
E\left[\frac{-\partial^{2} L(\theta)}{\partial \theta^{2}}\right] & =\frac{2\left(n \theta^{2}\right)+n 2 \theta(1-\theta)}{\theta^{2}}-\frac{2 n \theta(1-\theta)+2 n(1-\theta)^{2}}{(1-\theta)^{2}} \\
& =2 n+\frac{2 n}{\theta}-2 n-\frac{2 n \theta}{1-\theta}+2 n \\
& =\frac{2 n(1-\theta)-2 n \theta^{2}+2 n(1-\theta) \theta}{\theta(1-\theta)} \\
& =\frac{2 n-2 n \theta-2 n \theta^{2}+2 n\left(\theta-\theta^{2}\right)}{\theta(1-\theta)} \\
& =\frac{2 n-2 n \theta-2 n \theta^{2}+2 n \theta+2 n \theta^{2}}{\theta(1-\theta)} \\
& =\frac{2 n}{\theta(1-\theta)}
\end{aligned}
$$

The asymptotic variance is the inverse of $E\left[\frac{-\partial^{2} L(\theta)}{\partial \theta^{2}}\right]$, which is $\frac{\theta(1-\theta)}{2 n}$. Therefore, the asymptotic standard error is $\sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{2 n}}$.
c.) The expected counts for the genotypes are $n \theta^{2}, 2 n \theta(1-\theta)$, and $n(1-\theta)^{2}$ since the counts are multinomially distributed. We could test these expected values compared to the observed n_{1}, n_{2}, and n_{3} using $\chi_{G O F}^{2}$ with $d f=(3-1)-1=1$.

