
Goodness-of-®t Tests for GEE with
Correlated Binary Data

WEI PAN

University of Minnesota

ABSTRACT. The marginal logistic regression, in combination with GEE, is an increasingly

important method in dealing with correlated binary data. As for independent binary data, when the

number of possible combinations of the covariate values in a logistic regression model is much

larger than the sample size, such as when the logistic model contains at least one continuous

covariate, many existing chi-square goodness-of-®t tests either are not applicable or have some

serious drawbacks. In this paper two residual based normal goodness-of-®t test statistics are

proposed: the Pearson chi-square and an unweighted sum of residual squares. Easy-to-calculate

approximations to the mean and variance of either statistic are also given. Their performance, in

terms of both size and power, was satisfactory in our simulation studies. For illustration we apply

them to a real data set.

Key words: generalized estimating equations, logistic regression, Pearson's chi-square,

unweighted sum of squares

1. Introduction

The logistic regression model is widely used in analyzing independent binary response data. In

familial or longitudinal studies, correlated binary data often arise. The marginal logistic

regression and its associated generalized estimating equations (GEE) method are an

increasingly important approach to analysing such data (Liang & Zeger, 1986). In general,

it is important to assess the overall goodness-of-®t of the regression model. Recently, two

methods were proposed for correlated binary data (Barnhart & Williamson, 1998; Horton

et al., 1999). These two tests can be regarded respectively as an extension of the goodness-of-®t

test of Tsiatis (1980) and that of Hosmer & Lemeshow (1980) for ordinary logistic regression

(with independent binary data) to marginal logistic regression (with correlated binary data).

They are based on forming groups by partitioning the space of covariates or of predicted

probabilities such that statistical inference can be drawn based on the chi-square distribution.

We believe that these tests are useful in practice. Their disadvantage is that the resulting test

statistics depend on the subjective partitioning. Hosmer et al. (1997) gave an example for

ordinary logistic regression. Using a well known-data set, they showed that six commonly used

statistical packages give six different p-values for the Hosmer±Lemeshow test: four packages

produce a statistic with a p-value > 0:1, one with 0:05 < p-value < 0:1 and one with a

p-value < 0:05. This unpleasant discrepancy among them arises from their difference in

forming groups to construct the statistic. Presumably this issue will also persist with a test

based on partitioning in the context of marginal modelling.

In this paper, we consider the situation where the number of possible combinations of the

covariate values in a logistic model is much larger than the sample size, such as when the logistic

model contains at least one continuous covariate. Our approach is a natural extension of that

for independent binary data to correlated binary data. In a nice review of many existing

goodness-of-®t tests for ordinary logistic regression, Hosmer et al. (1997) demonstrated that

the asymptotic normal Pearson's chi-square statistic and an unweighted sum of residual squares

statistic enjoy good properties of both power and size. Note that for binary data without
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grouping, the Pearson chi-square does not have a usual chi-square distribution. It seems

desirable to extend these two test statistics to marginal logistic regression. We pursue it here.

2. Two goodness-of-®t tests

Suppose we have N subjects (or clusters). For each subject i; 1 � i � N , there are Ni binary (0

or 1) response values yi � �yi1; . . .; yiNi�0 and covariate matrix xi � �xi1; . . .; xiNi�0. From now on,

for simplicity we assume Ni � m for all i. For i 6� j; yi and yj are independent, but generally the

components of each yi are correlated. The marginal logistic regression model speci®es that

logit�pit� � x0itb, where pit � E�yitjxit� and var�yitjxit� � pit�1ÿ pit�. The unknown regression

coef®cient (vector) b is of primary interest, which can be estimated through solving the

following generalized estimating equations (Liang & Zeger 1986):

S�b� �
XN

i�1

@pi

@b0

� �0
V ÿ1i �yi ÿ pi� �

XN

i�1
x0iAiV ÿ1i �yi ÿ pi� � 0; �1�

where Ai is a diagonal matrix diag�pi1�1ÿ pi1�; . . .; pim�1ÿ pim��, and Vi is the working

covariance matrix of yi. Vi can be expressed in terms of the working correlation matrix

RW � RW �a�: Vi � A1=2
i RW A1=2

i , where a may be some unknown parameters involved in the

working correlation structure, which can be estimated through moment methods or another

set of estimating equations. An attractive point of GEE is that it can yield consistent and

asymptotically normal estimate of b; b̂ �b̂�RW �, even when the working correlation matrix RW

is incorrectly speci®ed. For instance, we can use the working independence model with RW � I ,
the identity matrix. The choice of RW will in¯uence the estimation e�ciency: it is more e�cient

to use RW that is closer to the true underlying correlation structure. Many studies have shown

that b̂ obtained under the working independence model is relatively e�cient (Zeger, 1988;

McDonald, 1993; Sutradhar & Das, 1999), at least when the within-subject correlation is not

too strong.

For any expression B � B�b�, we write B̂ � B�b̂�. For instance, p̂ij � logitÿ1�x0ij b̂� is the

estimate of pij by replacing b with b̂. We also use the conventional notation that

Y � �y01; . . .; y0N �0; X � �xi; . . .; xN �0; A � diag�A1; . . .;AN �; V � diag�V1; . . .; VN �, and similarly

for p and others.

Now we derive an approximation to residuals ê � Y ÿ p̂. A Taylor expansion of ê at the true
b� leads to

Y ÿ p̂ � Y ÿ pÿ @p

@b0

����
b�b�

" #
�b̂ÿ b�� � Y ÿ pÿ AX �b̂ÿ b��: �2�

By another Taylor expansion of S�b̂� at b� we have

0 � S�b̂� � S�b�� � @S
@b0

����
b�b�

" #
�b̂ÿ b��

�
XN

i�1
x0iAiV ÿ1i �yi ÿ pi� � @S

@b0

����
b�b�

" #
�b̂ÿ b��; �3�

where a general (but complex) formula for @S=@b0 is given in the appendix. If we approximate

AiV ÿ1i as a constant matrix, which is true if we use the working independence model V � A,
then @S=@b0 can be largely simpli®ed as

@S
@b0
� ÿ

XN

i�1
x0iAiV ÿ1i Aixi: �4�
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Combining (2)±(4), we have

Y ÿ p̂ � �I ÿ H��Y ÿ p�; where H � AX �X 0AV ÿ1AX �ÿ1X 0AV ÿ1: �5�

If we use the working independence model V � A, H reduces to H � AX �X 0AX �ÿ1X 0, which is

the same as that given in Hosmer et al. (1997) for independent binary data.

The Pearson chi-square statistic is

G �
XN

i�1

Xm

j�1

�yij ÿ p̂ij�2
p̂ij�1ÿ p̂ij�

� Nm� �1ÿ 2p̂�0Âÿ1ê � Nm� �1ÿ 2p̂�0Âÿ1�I ÿ H�e:

Treating �1ÿ 2p̂�0Âÿ1 as ®xed, we obtain the approximate mean and variance of G:dE�G� � Nm; dvar�G� � �1ÿ 2p̂�0Âÿ1�I ÿ Ĥ� dcov�Y ��I ÿ Ĥ 0�Âÿ1�1ÿ 2p̂�:
There are two ways to estimate cov�Y �. The ®rst is to use the empirical covariance estimatordcov�Y�e � diag� dcov�Y1�; . . .; dcov�YN ��, where dcov�Yi� � �yi ÿ p̂i��yi ÿ p̂i�0, as used in the robust

covariance estimator of the estimated regression coe�cients b̂ (Liang & Zeger, 1986). Its

advantage is the simplicity and generality. However, as a crude estimator it may not be

e�cient. Hence we propose to use the second, dcov�Y �u � Â1=2diag�R̂u; . . .; R̂u�Â1=2, where R̂u is

the unstructured correlation matrix estimate (Liang & Zeger, 1986). Speci®cally,

R̂u � 1

N

XN

i�1
Âÿ1=2i �yi ÿ p̂i��yi ÿ p̂i�0Âÿ1=2i :

Note that R̂u is obtained without any assumption on the speci®c structure on the true

correlation matrix; in particular, we do not use the estimated working correlation matrix R̂W ,

which may be speci®ed incorrectly.

According to the asymptotic result in Osius & Rojek (1992), one can argue that G has an

approximately normal distribution (as m is bounded and N tends to in®nity). The p-value is

thus obtained by referring G to a normal distribution with mean Nm and variance dvar�G�.
Hosmer et al. (1997) also reviewed a statistic based on an unweighted sum of residual

squares, which surprisingly had a good performance in their simulations (see also Copas,

1989). In our context, we de®ne it to be:

U �
XN

i�1

Xm

j�1
�yij ÿ p̂ij�2 � p̂0�1ÿ p̂� � �1ÿ 2p̂�0ê � p̂0�1ÿ p̂� � �1ÿ 2p̂�0�I ÿ H�e:

Its mean and variance are approximatelydE�U� � p̂0�1ÿ p̂�; dvar�U� � �1ÿ 2p̂�0�I ÿ Ĥ� dcov�Y ��I ÿ Ĥ 0��1ÿ 2p̂�;
and cov�Y � is estimated using either dcov�Y �e or dcov�Y �u described above. Again U has an

approximately normal distribution.

Remark 1. In the ordinary logistic regression, replacing V̂ and dcov�Y � by Â, we obtain the

(unconditional) goodness-of-®t tests given in Hosmer et al. (1997).

Remark 2. As in le Cessie & Houwelingen (1991) and Hosmer et al. (1997), a chi-square

distribution can be adopted to approximate the distribution of the non-negative Pearson and

the unweighted sum of squares statistics. In our experience, its performance is close to that

based on the normal approximation. Hence we will skip its discussion.
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Remark 3. The easiest way to use the above two tests is to use the working independence

model in GEE; i.e. RW � I or V � A. Our experience from simulation studies showed that

using the working independence model yielded results better than those from using the

working exchangeable correlation matrix in situations with time-varying covariates and cluster

size m > 2 (not reported here). The reason is probably that with a more general RW the more

complex form of either the exact result in the appendix or (4) leads to less accurate

approximations to the variance of the test statistics when using (and estimating) a more

complex working correlation matrix. Hence, from now on, we restrict our discussion of the

two tests to that based on the working independence model in GEE.

Remark 4. We emphasize that our tests are proposed for ungrouped binary data, such as

when a continuous covariate is present, or, in general, when the number of possible

combinations of the covariate values is much larger than the sample size. This corresponds to

the so-called increasing-cells asymptotics in Osius & Rojek (1992). If there is a natural

partitioning in the covariates, such as when the covariates are all discrete and there are many

replications for each combination of the covariate values (i.e. the ®xed-cells asymptotics in

Osius & Rojek, 1992), Barnhart & Williamson's and Horton et al. chi-square tests based on

partitioning are more appropriate.

3. Simulations

Simulation studies were conducted to investigate the ®nite sample performance of the

proposed tests. We ®rst use Barnhart & Williamson's Model III to detect an omitted quadratic

term. The true model is

logit�pit� � b0 � b1xi � b2x2i ;

where i � 1; . . .;N and t � 1; 2; xi is a continuous covariate generated from a uniform

distribution U�ÿ3; 3�. The values of bs are determined by Pr�yit � 1jxi � ÿ1� � 0:2,

Pr�yit � 1jxi � 3� � 0:95, and Pr�yit � 1jxi � ÿ3� � K with K � 0:03, 0.10, 0.20 and 0.40. In

particular, K � 0:03 leads to b2 � 0, which corresponds to the null hypothesis

H0 : logit�pit� � b0 � b1xi:

All the simulated data were generated in S-plus, and our computer program was also

implemented in S-plus. In particular, we used gee() function to ®t a GEE model.

The ®rst scenario we consider is that q � corr�yi1; yi2� is constant with all i. Bahadur's (1961)
representation was used to generate simulated data. The results with various q and N are

presented in Table 1. The Pearson chi-square statistic G and the unweighted sum of squares

statistic U are based on dcov�Y �u while the other two, G2 and U2 are calculated by usingdcov�Y �e. We also consider two statistics, G�Indp.� and U�Indp.�, obtained under the possibly

incorrect assumption that we have independent data.

Under H0, the test sizes of using G and U are close to the nominal levels, whereas using G2

and U2 may lead to slightly in¯ated Type I errors. It may imply that using dcov�Y �u leads to

better performance of the tests. This is not surprising since it is well known that the empirical

covariance estimator is ine�cient. Between G2 and U2, it appears that U2 is better. Next we

compare G and U with the other two statistics, G�Indp.� and U�Indp.�. For small q, it seems

that all four tests have satisfactory size. When q � 0, using R̂u does not lose much e�ciency as

compared to the tests under the correct independence assumption. As q increases to 0.5,

unsurprisingly, the two tests based on the incorrect independence assumption have in¯ated
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Type I errors with either N � 100 or N � 200. In contrast, the two proposed tests (G and U )

maintain correct size.

When H0 does not hold, it appears that the two tests based on G and U are more powerful

than those based on G2 and U2. Although the performances of using the Pearson chi-square

statistic G and the unweighted sum of squares statistic U are close, sometimes it seems that

using G is slightly more powerful than using U . However, it is possible that the latter is more

stable and hence more desirable when some p̂it are close to 0 or 1.

An implicit assumption under using R̂u is that the within-subject correlation structure

(parametrized by correlation coe�cients) is shared by all subjects; in other words, any

corr�yi1; yi2� does not depend on i. To assess the robustness of our tests when this assumption is

violated, we generated data with a constant within-subject odds ratio OR as in Barnhart &

Williamson (1998) (see also Diggle et al., 1994, p. 150), where

OR � Pr�yi1 � yi2 � 1�Pr�yi1 � yi2 � 0�
Pr�yi1 � 1; yi2 � 0�Pr�yi1 � 0; yi2 � 1�

does not depend on i. It is easy to verify that in general a constant OR means that the within-

subject correlation corr�yi1; yi2� is no longer a constant. From Table 2, it appears that our

proposed two tests based on G and U still keep satisfactory size and power. In particular,

comparing our results in Table 2 with those in table 3 of Barnhart & Williamson (1998), we

feel that the performance of our tests based on G and U is promising. Although the other two

test statistics G2 and U2 do not depend on any assumption on the correlation structure of the

response vector, they may still have slightly in¯ated Type I errors (as in Table 1), which

however become closer to the nominal levels as the sample size increases. In particular, the

performance of U2 appears to be better than that of G2.

Now we consider detecting an omitted interaction term. The correct model is

logit�pit� � b0 � b1x1;i � b2x2;it � b3x1;ix2;it;

where i � 1; . . .;N and t � 1; 2; x1;i and x2;it are all independently drawn from U�ÿ2; 2�; and
b0 � 0, b1 � ÿb2 � 0:5, and various values of b3 will be used. The constant within-subject

odds ratio is OR � 2. The null model is

H0 : logit�pit� � b0 � b1x1;i � b2x2;it:

The results are presented in Table 3. It can be seen that as b3 or the sample size N increases,

the power of the tests all improve. Again the two tests based on R and U are better than that

based on R2 or U2.

Table 2. Size ( for K = 0.03) and power (otherwise) of the goodness-of-®t tests in detecting an omitted

quadratic term at the nominal level 5% (1%) from 500 replications. The within-subject odds ratio is constant

(OR = 2)

N = 100 N = 200

Statistic K = 0.03 0.10 0.20 0.40 0.03 0.10 0.20 0.40

G 0.034 0.196 0.472 0.826 0.060 0.314 0.738 0.978

(0.010) (0.092) (0.286) (0.684) (0.016) (0.168) (0.544) (0.964)

U 0.060 0.164 0.410 0.822 0.056 0.270 0.698 0.978

(0.022) (0.084) (0.252) (0.680) (0.012) (0.136) (0.516) (0.958)

G2 0.090 0.088 0.240 0.718 0.076 0.168 0.586 0.972

(0.022) (0.024) (0.066) (0.402) (0.028) (0.042) (0.292) (0.888)

U2 0.074 0.110 0.270 0.732 0.056 0.182 0.592 0.966

(0.022) (0.024) (0.090) (0.454) (0.016) (0.046) (0.314) (0.896)
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4. Example

We apply the proposed tests to the Wisconsin epidemiologic study of diabetic retinopathy

(Klein et al., 1984) data set, which was also analysed by Barnhart & Williamson (1998).

The study goal was to determine the risk factors for diabetic retinopathy. The binary

response is the presence of diabetic retinopathy in each of two eyes from each of 720

individuals in the study. As in Barnhart & Williamson (1998), the ®rst model ®tted includes

four main effects: duration of diabetes, glycosylated hemoglobin level, diastolic blood

pressure and body mass index. The Pearson chi-square statistic G is 20505 with mean 1440

and variance 1472992, and the unweighted sum of squares statistic U is 194.6 with mean

213.3 and variance 7.0. Both yield a p-value < 0:0001, indicating the lack-of-®t of the

model. Using the statistics G2 and U2 leads to the p-values 0.1660 and 0.0010 respectively.

Based on our observation from the simulation studies that the statistics G and U perform

better than G2 and U2, and that the U2 statistic is preferred over G2, we conclude that

there is an evidence against the current model. Next, we ®t a larger model by adding two

covariates: the square of duration of diabetes and square of body mass index. The two

statistics G and U (with mean and variance) are respectively 1559.8 (1440 and 9387.5) and

183.5 (186.4 and 3.1), leading to the p-values 0.22 and 0.10. Using either of the G2 or U2

leads to the same conclusion. These results are consistent with those obtained by Barnhart

& Williamson (1998).

5. Discussion

In this paper we have proposed two normal-based goodness-of-®t tests for ungrouped

correlated binary data. Their performance was investigated through simulation studies and

appeared to be satisfactory. The proposed tests are not meant as a replacement of, but

complement to, the existing tests, such as Barnhart & Williams's (1998) test. In particular,

we emphasize that our proposed tests are intended to be used with ungrouped binary data,

where the response is binary and the observed covariates for di�erent subjects (or clusters) are

essentially di�erent. When we have grouped binary data, other tests are more appropriate.

Although our proposed tests appear to be useful, future studies are warranted to gain

more insights on their properties, including their strengths and weaknesses.

To implement the proposed two tests, we need to estimate the covariance matrix of the

response vector. Two proposals have been studied. One is the empirical covariance

Table 3. Size ( for b3 � 0) and power (otherwise) of the goodness-of-®t tests in detecting an omitted two-way

interaction term at the nominal level 5% (1%) from 500 replications. The within-subject odds ratio is constant

(OR = 2)

N = 100 N = 200

Statistic b3 = 0 0.5 1.0 1.5 0 0.5 1.0 1.5

G 0.060 0.340 0.640 0.694 0.042 0.418 0.778 0.812

(0.016) (0.184) (0.530) (0.604) (0.002) (0.294) (0.694) (0.744)

U 0.054 0.316 0.636 0.698 0.044 0.402 0.774 0.810

(0.018) (0.166) (0.526) (0.600) (0.004) (0.270) (0.690) (0.738)

G2 0.076 0.184 0.584 0.668 0.052 0.346 0.742 0.796

(0.018) (0.054) (0.364) (0.510) (0.014) (0.150) (0.622) (0.728)

U2 0.072 0.202 0.582 0.666 0.052 0.338 0.744 0.798

(0.016) (0.060) (0.370) (0.522) (0.008) (0.166) (0.628) (0.720)
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estimator based on the residuals, as used in the usual sandwich estimator of the estimated

regression coe�cients in GEE. Another is based on the estimate of the unstructured

correlation matrix. The former is less restrictive but also less e�cient than the latter. Hence

in general we recommend the use of the latter. In addition, although our proposal can

accommodate using various working correlation structures in GEE, we ®nd that the

working independence model works best. Further studies are needed to investigate how to

improve the performance of the tests when other more general working correlation

structures are used.

Finally we remark on the limitations of the goodness-of-®t tests. Since all these tests are

proposed to detect some general model departures, their power is likely to be limited in

practice. Formulating a more speci®c alternative hypothesis and using a related test can

improve the power. For instance, if we suspect that the e�ect of a covariate is not linear and

likely to be quadratic, then directly testing the signi®cance of the adding-in quadratic term will

have a higher power than using a general goodness-of-®t test. An attractive point of using a

goodness-of-®t test is its convenience. If a goodness-of-®t test rejects the current model, at

least it reminds the data analyst that the model is inadequate and some measures have to be

taken to ®x it. On the other hand, if a goodness-of-®t test does not reject the current model, it

does not necessarily mean that the model ®ts well and the data analyst still needs to use other

techniques to con®rm the adequacy of the model.
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Appendix

We derive @S=@b0 for any general working correlation matrix RW being used. We will use some

results from matrix di�erentiation (see, e.g. Vonesh & Chinchilli, 1997, p. 11±16, for a nice

introduction). We need ®rst de®ne some matrix operators. For any matrix B, vec�B� creates
another column vector by simply stacking the columns of B one by one. For any r � s matrix

A � �aij� and any matrix B, de®ne

A
 B �
a11B a12B . . . a1sB
a21B a22B . . . a2sB
. . .

ar1B ar2B . . . arsB

0BB@
1CCA:

And we use Ir to denote a r � r identity matrix.

Using (1) we have

@S
@b0
�
XN

i�1

@�x0iA1=2
i Rÿ1W Aÿ1=2i �yi ÿ pi��

@b0

�
XN

i�1
Aÿ1=2i �yi ÿ pi� 
 Ik

� �0@ vec�x0iA1=2
i Rÿ1W �

@b0

� I1 
 x0iA
1=2
i Rÿ1W

� � @�Aÿ1=2i �yi ÿ pi��
@b0

:

Since

@ vec�x0iA1=2
i Rÿ1W �

@b0
� INi 
 x0i
ÿ � @ vec�A1=2

i Rÿ1W �
@b0

� INi 
 x0i
ÿ � �Rÿ1W 
 INi�0

@ vec�A1=2
i �

@b0

" #

� Rÿ1W 
 x0i
ÿ � @ vec�A1=2

i �
@b0

;

and

@�Aÿ1=2i �yi ÿ pi��
@b0

� ��yi ÿ pi� 
 INi �0
@ vec�Aÿ1=2i �

@b0
� �I1 
 Aÿ1=2i � @�yi ÿ pi�

@b0
;

using @pi=@b
0 � Aixi, we obtain
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@S=@b0 �
XN

i�1

�
��yi ÿ pi�0Aÿ1=2i Rÿ1W 
 x0i�

@ vec�A1=2
i �

@b0

� ��yi ÿ pi�0 
 x0iA
1=2
i Rÿ1W �

@ vec�Aÿ1=2i �
@b0

ÿ x0iA
1=2
i Rÿ1W A1=2

i xi

�
�
XN

i�1

�XNi

j�1

1

2
bijv

1=2
ij �1ÿ 2pij�xijx0ij

ÿ
XNi

j�1

1

2
eijv
ÿ1=2
ij �1ÿ 2pij��x0iA1=2

i Rÿ1W �jx0ij ÿ x0iAiV ÿ1i Aixi

�
;

where bij is the jth element of �yi ÿ pi�0Aÿ1=2i Rÿ1W , vij � pij�1ÿ pij�, and �x0iA1=2
i Rÿ1W �j is the jth

column of x0iA
1=2
i Rÿ1W .
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