
* Correspondence to: Nicholas J. Horton, Department of Biostatistics, Harvard School of Public Health, 677 Huntington
Avenue, Boston, MA 02115, U.S.A. E-mail: horton@hsph.harvard.edu

Contract/grant sponsor: NCI
Contract/grant numbers: CA-55576, CA-70101-01
Contract/grant sponsor: NIMH
Contract/grant numbers: T32-MH17119, U01-MH 51465, R01-MH54693
Contract/grant sponsor: NIEHS
Contract/grant number: ES-06900
Contract/grant sponsor: NIH
Contract/grant number: F31-GM 17274

CCC 0277—6715/99/020213—10$17.50 Received October 1997
Copyright ( 1999 John Wiley & Sons, Ltd. Accepted March 1998

STATISTICS IN MEDICINE

Statist. Med. 18, 213—222 (1999)

GOODNESS-OF-FIT FOR GEE: AN EXAMPLE WITH
MENTAL HEALTH SERVICE UTILIZATION

NICHOLAS J. HORTON1*, JUDITH D. BEBCHUK1, CHERYL L. JONES1, STUART R. LIPSITZ2,
PAUL J. CATALANO2, GWENDOLYN E. P. ZAHNER3 AND GARRETT M. FITZMAURICE1

1 Department of Biostatistics, Harvard School of Public Health, Boston, MA, º.S.A.
2Dana Farber Cancer Institute, Boston and Department of Biostatistics, Harvard School of Public Health, º.S.A.

3Department of Psychiatry, Harvard Medical School, Boston, MA, º.S.A.

SUMMARY

Suppose we use generalized estimating equations to estimate a marginal regression model for repeated
binary observations. There are no established summary statistics available for assessing the adequacy of the
fitted model. In this paper we propose a goodness-of-fit test statistic which has an approximate chi-squared
distribution when we have specified the model correctly. The proposed statistic can be viewed as an
extension of the Hosmer and Lemeshow goodness-of-fit statistic for ordinary logistic regression to marginal
regression models for repeated binary responses. We illustrate the methods using data from a study of
mental health service utilization by children. The repeated responses are a set of binary measures of service
use. We fit a marginal logistic regression model to the data using generalized estimating equations, and we
apply the proposed goodness-of-fit statistic to assess the adequacy of the fitted model. Copyright ( 1999
John Wiley & Sons, Ltd.

INTRODUCTION

The use of generalized estimating equations to analyse repeated binary data has become
increasingly common in the health sciences. However, few methods exist to assess the goodness-
of-fit of the fitted marginal regression models. We propose a goodness-of-fit statistic that is an
extension of the Hosmer and Lemeshow1 statistic for ordinary logistic regression to marginal
regression models for repeated binary observations. We illustrate the methods using data from
a study examining mental health service utilization in children. A goal of this study is to explore
the relationship between the repeated outcomes — binary measures of service utilization in one of



three settings (general health settings, school based settings, or mental health settings) — and
covariates such as age, gender, family characteristics, and behavioural problems.

The models we consider are marginal models, which relate the expected value of each of the
repeated binary responses separately to the covariates, via some appropriate link function (for
example, logistic). To estimate the parameters of the marginal model, various authors have
developed moment-based generalized estimating equations (GEEs),2,3 which require specifica-
tion of the form of the first two moments (the success probabilities and correlations) of the vector
of binary responses for each individual. No established global measures of the goodness-of-fit of
these marginal models are presently available. Our aims in this paper are to propose a goodness-
of-fit statistic for marginal models and to illustrate its application.

For studies in which there are no repeated measures (that is, each subject has a single binary
response), there have been several methods proposed for assessing the goodness-of-fit of logistic
regression models. These are based on the notion of partitioning the subjects into groups or
regions (Tsiatis4 and Hosmer and Lemeshow1). We calculate a goodness-of-fit statistic as
a quadratic form in the observed minus predicted responses in these regions or partitions.
Schoenfeld also suggested a class of goodness-of-fit tests for the proportional hazards regression
model.5 Recently Barnhart and Williamson6 have proposed a goodness-of-fit test that involves an
extension of these methods to repeated outcomes.

With many continuous covariates and a single binary response, Hosmer and Lemeshow1

propose partitioning subjects into groups or regions based on the percentiles of the predicted
probabilities from the fitted logistic regression model. In this paper, we extend the Hosmer and
Lemeshow method to repeated binary responses.

GENERALIZED ESTIMATING EQUATIONS (GEE) FOR REPEATED BINARY
OUTCOMES

In this section, we review the GEE methodology proposed by Liang and Zeger.2,7 Assume that
there are ¹ repeated measurements on N subjects. However, either by design or due to missing
data, the ith subject (i"1, 2, N) has ¹

i
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Although we assume a logit link function in (2), in principle, we can choose any suitable link
function. Recall that our interest is in testing the adequacy of this logistic regression. Note that we
can group the p
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We find the GEE estimatior of b, bª , by solving the following estimating equations:
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‘working’ covariance matrix of Y

i
. We can specify this

‘working’ or approximate covariance matrix through a ‘working’ correlation matrix. In particu-
lar, we account for the correlation structure of each individual’s vector of observations, Y

i
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the tth diagonal entry. We obtain the estimate of b by replacing the unknown a by any consistent
estimate of it and solving for bª iteratively. Liang and Zeger2 show that under mild regularity
conditions, bª is a consistant estimator of b.

GOF FOR LOGISTIC REGRESSION

Before discussing our method for assessing the fit of the marginal model in (2), we briefly review
the Hosmer—Lemeshow methodology for checking the goodness-of-fit for a logistic regression
model (with no repeated measures). Since there are no repeated measures, for now, we drop the
subscript t, and consider the fit of the following model:

logit(p
i
)"b

0
#b@

1
x
i
. (4)

Hosmer and Lemeshow suggest forming a set of G groups, commonly 10. We form these groups
based on the deciles of risk as determined by the estimated probabilities (p'

i
) from model (4). In

other words we use the lowest n/10 p'
i
’s to form one category, we use the next highest n/10 p'

i
’s to

form a second category and so on. Thus we can create (G!1) new indicator variables to identify
the decile of risk for each individual. One can show that the p'

i
’s are a monotone transformation of

an individual’s covariates. For example, in the case where there is only one continuous covariate
of interest, equivalent deciles of risk result whether they are based on the covariate of interest or
the estimated p'

i
’s. To determine if the model is a good fit, we add the additional (G!1) covariates

to model (4). If we find these additional covariates significant, then there is evidence for lack of fit.
Typically in the ordinary logistic regression setting, we use the Wald, likelihood ratio or score test
statistic.

GOF FOR REPEATED BINARY OUTCOMES

Consider the case where we have ¹ repeated measurements. Suppose we want to determine
whether the (marginal) model

p
it
"A

eb0`b{1xit

1#eb0`b{1xit B.
is a good fit. One approach is to fit a broader model with interactions and/or polynomial and
higher-order terms and to test whether the additional terms are significant. If they are not
significant, then we may judge the model as having a good fit. Alternatively, we can obtain
a ‘global goodness-of-fit’ statistic by extending the Hosmer—Lemeshow method. Following the
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suggestion of Hosmer and Lemeshow for ordinary logistic regression, we propose forming
G (usually 10) groups based on combinations of the covariates x

it
’s in the logistic regression

model, and testing to see if the additional regression coefficients for the G!1 indicator variables
differ significantly from zero.

However, we need a rule for forming the groups based on combinations of the covariates x
it
. If

all covariates are discrete, we can form a different group for each level in the cross-classification of
covariates, but with many discrete covariates, there are too many groups. With many discrete
and/or continuous covariates we suggest forming groups based on deciles of risk, as suggested by
Hosmer and Lemeshow. That is, we form groups based on:
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10. The last group contains the +N
i/1

¹
i
/10, (y

it
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.

Because some subjects may have identical covariate values, there can be ties in predicted risk,
and so the number of subjects in each decile of risk may differ.

In general, we could form G groups, with approximately +N
i/1

¹
i
/G observations in each group.

Since subject i can have different pJ
it
’s for each of the ¹

i
observations, a subject’s group

membership, g, can change for different t, g"1, 2 , (G!1). That is, we can consider the group
variable as a time-varying covariate. Observations in the same group have similar pJ

it
’s and thus

similar predicted ‘risks’.
Suppose we define the (G! 1) group indicators

I
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0 if otherwise,
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where the groups are based on ‘percentiles of risk’. Then, to test the goodness-of-fit of the model
given by (2), we consider the alternative model
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Effectively, we are forming an ‘alternative’ model used to test the fit of the given model. Even
though I

itg
is based on the random quantities pJ

it
, Moore and Spruill8 showed that, asymptotically,

we can treat the partition as though based on the true p
it
. Thus, we can treat I

itg
as a ‘fixed’

covariate. Results of limited simulations (not reported here, but available from the authors)
suggest this assumption holds for moderately sized samples.

In general, if the model given by (4) is appropriate, then c
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"0. A test of the fit

of the model is equivalent to a test of:

H
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which we can conduct using the GEE score or Wald statistic. Both statistics have asymptotic
chi-squared distributions with (G!1) degrees of freedom under the null hypothesis (that is,
assuming the proposed model fits the data).

We propose the use of the score statistic since it only requires the estimate of (b
0
, b

1
) under the

null, whereas the Wald statistic requires the estimate of c
g
under the alternative model. Also, the

results of simulations suggest that the score statistic has better small sample properties. Finally,
for a small percentage of simulation runs, the algorithm for (b, c) in the alternative model (with
G!1 ‘extra’ parameters) did not converge. When the algorithm does not converge, the Wald
statistic is not available, but the score statistic is easily computable.

Next, we describe the score statistic in more detail. The quasi-score statistic for testing
H
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In general, the score test (Rotnitzky and Jewell9) is

X2"u (b3 , 0)@MvarY [u(b3 , 0)]N~1u(b3 , 0). (6)

However, we are using b3 which we obtain by solving u
1
(b3 , 0)"0. Therefore, the GEE score

statistic for testing H
0
:c"0 is actually based on the large sample distribution of u

2
(b3 , 0), is given

by
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2
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2
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2
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which is distributed as s2
G~1

under the null. A SAS10 macro was used to calculate the numerical
value of equation (7). The macro used to conduct goodness-of-fit used the independence working
covariance structure for computational simplicity. The variance estimate used in (7) is somewhat
different than the one proposed by Rotnitzky and Jewell,9 and appears in the appendix.

A significant GEE score statistic indicates that the proposed model leaves a substantial amount
of variability in the data not taken into account.

EXAMPLE: MENTAL HEALTH SERVICE UTILIZATION

In this section we apply the proposed methods to data from a study of mental health utilization
by children. The study design has been reported elsewhere, 11, 12 as has a substantive analysis of
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the service utilization data.13 Subjects included 2519 children, aged 6—11, who were part of two
cross-sectional surveys conducted in eastern Connecticut in the late 1980s. A goal of these surveys
was to study determinants of mental health service utilization.

Parents of the children completed survey questionnaires that solicited information on child and
household characteristics. The primary outcomes were service use in three settings: general
health, school, and mental health. For a given setting, service use was defined as a parental report
that the child had ever seen a provider or been in a special programme for a behavioural problem.
If the particular service was used, the outcome was coded 1, and coded 0 otherwise. Clearly these
binary outcomes are correlated for a given child.

In this study it is of interest to relate service use in the three settings to both child and family
characteristics. Covariates measured for the child included age (AGE: 0"age 6 to 8, 1"age 9 to
11), gender (GENDER: 0"female, 1"male), ethnicity (BLACK: 0"non-black, 1"black and
HISPANIC: 0"non-Hispanic, 1"Hispanic), and religion (CATHOLIC: 0"non-Catholic,
1"Catholic). The health and well-being of the child was assessed with the following covariates:
total score on the Child Behavioral Checklist (CBCL) dichotomized at the 1991 published normal
threshold (PQTOT: 0"no problems, 1"above borderline/clinical threshold for problems);
academic problems (ACADPROB: 0"no academic problems, 1"repeated a grade, advised to
repeat grade); and health problems (HLTHPROB: 0"no health problems, 1"fair or poor
health, chronic condition, or limitation in activity).

Maternal and family covariates included belonging to a single parent household (MOMSING:
0"father figure present, 1"no father figure present); family stressors (FAMSTRESS: 0"no
stressors in past year, 1"one or more stressors reported in past year); maternal reports of
distress (MOMSTRESS: 0"no home stress or family dissatisfaction reported by mother,
1"report of home stress or family dissatisfaction); and whether the parent felt that their child
needed special help or treatment for a problem noted on the CBCL (PQNDHLP: 0"no need
reported, 1"need reported).

In the logistic regression analysis for repeated binary measures we adjusted for setting
(using indicators for SCHOOL and MENTAL, that is, we used general services as baseline)
and the above covariates. We assumed an independence working correlation structure
and we obtained valid standard errors using the so-called ‘sandwich’ variance estimator.2
We obtained similar results when we fit a model with an unstructured working covariance
structure. Table I lists the parameter estimates and standard errors for the initial model having
only main effects. These results indicated that being an older student, male, non-minority,
non-Catholic, having more than the threshold number of problems on the CBCL, health
problems, academic problems, parental report of need, and family stressors were all predictive of
service use.

Next we consider testing the goodness-of-fit of this model. The goodness-of-fit test yielded
a s2 value of 17)29 and a p-value of 0)044. Since the goodness-of-fit statistic is based on 10 groups,
it is distributed as s2

9
. This result suggests that there is substantial evidence that this model does

not provide an adequate fit to the service use data.
Next, we considered additions to this main effects model to provide a better fit to the data.

Table II displays the results from a model that includes interactions between several of the
covariates and setting of service use. We introduced these interactions because prior studies
suggested that the effects of certain problems depend on the service setting.13 For example, one
might expect that school based service use is associated with academic problems. Several of these
interactions were highly significant, indicating their importance in modelling service utilization.
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Table I. Parameter estimates and SEs (robust) for model with main effects
only, obtained using independence working covariance matrix

Parameter Estimate SE z p-value

INTERCEPT !3)828 0)162 !23)70 (0)0001
SCHOOL 1)075 0)096 11)25 (0)0001
MENTAL !0)285 0)108 !2)64 0)008
GENDER 0)196 0)093 2)10 0)036
AGE 0)340 0)091 3)74 0)0002
PQTOT 0)616 0)111 5)54 (0)0001
BLACK !0)880 0)152 !5)80 (0)0001
HISPANIC !0)598 0)205 !2)92 0)003
CATHOLIC !0)299 0)094 !3)17 0)002
MOMSING 0)195 0)130 1)50 0)135
HLTHPROB 0)343 0)092 3)73 0)0002
ACADPROB 0)814 0)103 7)89 (0)0001
PQNDHLP 1)530 0)101 15)12 (0)0001
FAMSTRESS 0)187 0)102 1)83 0)067
MOMSTRESS 0)147 0)117 1)26 0)208

Goodness-of-fit statistic s2"17)29, p"0)044

Table II. Parameter estimates and SEs (robust) for final model including
higher-order interactions

Parameter Estimate SE z p-value

INTERCEPT !3)338 0)183 !18)29 (0)0001
SCHOOL 0)237 0)190 1)25 0)212
MENTAL !0)858 0)241 !3)56 0)0004
GENDER 0)199 0)095 2)09 0)036
AGE 0)350 0)093 3)76 0)0002
PQTOT 0)636 0)114 5)58 (0)0001
BLACK !0)909 0)157 !5)80 (0)0001
HISPANIC !0)615 0)212 !2)90 0)004
CATHOLIC !0)304 0)097 !3)14 0)002
MOMSING 0)193 0)134 1)45 0)148
HLTHPROB 0)354 0)094 3)76 0)0002
ACADPROB 0)111 0)160 0)69 0)487
PQNDHLP 1)580 0)104 15)21 (0)0001
FAMSTRESS 0)003 0)170 0)02 0)985
MOMSTRESS 0)150 0)120 1)25 0)210

ACADPROB*SCHOOL 1)380 0)187 7)36 (0)0001
ACADPROB*MENTAL 0)088 0)212 0)42 0)676
FAMSTRESS*SCHOOL 0)088 0)201 0)44 0)663
FAMSTRESS*MENTAL 0)706 0)257 2)75 0)006

Goodness-of-fit statistic s2"13)10, p"0)158

We observed that academic problems were strongly associated with higher rates of school based
service use, while having one or more family stressors was associated with higher rates of mental
health setting service use. The proposed goodness-of-fit test provided no evidence for lack of fit
for this model (GOF statistic s2"13)10, p"0)158).
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DISCUSSION

We have proposed a method to assess goodness-of-fit for repeated binary outcomes using
predicted deciles of risk. We have illustrated this method with a predictive model for mental
health service utilization. Guided by our proposed goodness-of-fit test, we rejected the initial
model that contained main effects only in favour of a model that included higher-order interac-
tions. This final model was consistent with results seen in previous analyses by Zahner and
Daskalakis.13

Although the proposed goodness-of-fit statistic has a simple interpretation, due to its global
nature it may miss important deviations from the fit, and can only directly test covariates that are
in the model. Recent work by Hosmer et al.14 reviewed a series of goodness-of-fit tests in the
logistic regression setting and found they had little power in small samples. We conjecture that
the same issues may apply in our setting. For a specific example, consider a situation where there
is a quadratic relationship between a continuous covariate and the outcome. A test of non-
linearity of that covariate would be much more powerful than our approach, since our omnibus
statistic may not have high power to detect a specific alternative. Instead, it has broad based
power to detect an array of general alternatives. This lack of power requires that the data analyst
look for lack of fit in other ways. One should not consider a non-significant goodness-of-fit test as
definitive evidence that a model is a good fit. We see the main value of this type of statistic in
situations where it indicates lack of fit and prompts the data analyst to further exploration and to
find ways to improve the model. Substantive knowledge of the subject-matter area should guide
this process.

APPENDIX

In this appendix, we derive varY [u
2
(b3 , 0)] used in equation (7). This estimate can be considered

a robust estimate of the conditional variance of u
2
(b, c) given b"b3 , c"0. We compute the

estimate of variance by first taking a Taylor series expansion of u
1
(b3 , 0) in (5) to arrive at an

estimate of (b3 !b ). This expansion is given by
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Similarly, we calculated a Taylor series expansion of u
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from (8). This expansion is given by
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where I is a (G!1)](G!1) identity matrix.
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This implies that the variance of u
2
(b3 , 0) is given by
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We obtain the variance estimate by substituting
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where the subscript i refers to the appropriate score vector from subject i.
We note that, under an independence working assumption, the elements of u

2
(b3 , 0) are the

observed minus expected values in the groups. If we then use the variance under independence in
(6) and (7), we obtain identically the Tsiatis logistic regression statistic with partitions based on
the predicted probabilities.
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