# BIOS 625: Categorical Data Analysis <br> and Generalized Linear Models Computing Basics in SAS - Exercise 2 

1. Calculate $\sum_{x=1}^{11}\left[\frac{x^{2}}{x+1}-2 x\right]$
2. Calculate $\prod_{y=6}^{10} \frac{y+1}{y+2}$
3. Assuming $y \sim \operatorname{Poisson}(\theta)$ and $\theta=4.5$ :
(a) Calculate $P(y<10)$.
(b) Calculate $P(y \geq 5)$.
4. Simulate a sample of $n=20$ standard normal random variables. Calculate the mean and standard deviation of this sample.

- Hint: Try the following

```
seed=45; c=j(n,1,seed); z=normal (c);
```

5. Simulate a sample of $n=20$ normal random variables with mean $\mu=10$ and variance $\sigma^{2}=2$. Calculate the mean and standard deviation of this sample.

- Hint: If $z \sim N(0,1)$, then $x=\mu+z \sigma \sim N\left(\mu, \sigma^{2}\right)$.

6. Simulate $m=10$ samples, each consisting of $n=20$ normal random variables with mean $\mu=10$ and variance $\sigma^{2}=2$.
(a) Calculate the mean and standard deviation for each sample.
(b) Calculate the overall mean (i.e. "mean of the means") and standard error of the sample means.

- Hint: You will need to "capture" $\bar{x}$ in each sample. There are several ways to do this; here are two:
- Update a vector with the requisite information. For instance, create a "zerovector" of $m$ degrees (called $v$ ), and then assign the $i^{\text {th }}$ mean to the $i^{\text {th }}$ row of $v$. This is done with the following code:

```
do i=1 to m; .... v[i,]=mean; ... end;
```

- You can "create" a vector as you cycle through the $m$ simulated samples by "stacking" the means on top of each other. You've done this before when you created vectors and matrices.

