BIOS 625: Categorical Data Analysis and Generalized Linear Models Computing Basics in SAS – Exercise 2

- 1. Calculate $\sum_{x=1}^{11} \left[\frac{x^2}{x+1} 2x \right]$
- 2. Calculate $\prod_{y=6}^{10} \frac{y+1}{y+2}$
- 3. Assuming $y \sim Poisson(\theta)$ and $\theta = 4.5$:
 - (a) Calculate P(y < 10).
 - (b) Calculate $P(y \ge 5)$.
- 4. Simulate a sample of n = 20 standard normal random variables. Calculate the mean and standard deviation of this sample.
 - Hint: Try the following
 seed=45;c=j(n,1,seed);z=normal(c);
- 5. Simulate a sample of n=20 normal random variables with mean $\mu=10$ and variance $\sigma^2=2$. Calculate the mean and standard deviation of this sample.
 - Hint: If $z \sim N(0,1)$, then $x = \mu + z\sigma \sim N(\mu, \sigma^2)$.
- 6. Simulate m=10 samples, each consisting of n=20 normal random variables with mean $\mu=10$ and variance $\sigma^2=2$.
 - (a) Calculate the mean and standard deviation for each sample.
 - (b) Calculate the overall mean (i.e. "mean of the means") and standard error of the sample means.
 - *Hint*: You will need to "capture" \bar{x} in each sample. There are several ways to do this; here are two:
 - Update a vector with the requisite information. For instance, create a "zero-vector" of m degrees (called v), and then assign the i^{th} mean to the i^{th} row of v. This is done with the following code:

do i=1 to m; v[i,]=mean; ... end;

You can "create" a vector as you cycle through the m simulated samples by "stacking" the means on top of each other. You've done this before when you created vectors and matrices.