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PARTITIONING OF CHI-SQUARE

CONTINGENCY TABLES1
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Emory University

This paper considers the technique of the exact partitioning of x2 contingency
tables. Methods are presented for partitioning contingency tables into com-
ponents. A general equation for x2 is derived. The equation may be used for the
calculation of exact x2 values for (a) nonexhaustive sets of categories, and (b)
situations in which some cells have small expected frequencies.

Brief references to the partitioning of chi-
square contingency tables have appeared in
the statistical literature for many years (e.g.,
Fisher, 1932), but few detailed discussions of
the topic exist. Essentially, until this time
there has been a formula (Irwin, 1949) for
partitioning into 2 X 2 tables, its computa-
tional equivalent (Kimball, 1954), and an
equation (Kastenbaum, 1960) for applications
in which one dimension has been reduced and
the remaining table has more than one degree
of freedom. In a source more readily available
to psychologists, Castellan (1965) has recently
reviewed some of these procedures.

This paper will present additional, more
complex patterns of partitioning, supplemented
by a general equation not heretofore formu-
lated. Furthermore, it can be shown that this
general equation is applicable for any mode or
degree of reduction of a contingency table and
that the technique provides a most suitable
solution to the problem of nonexhaustive
categories or expected frequencies which are
too small.

Purpose of Partitioning

When a chi-square test of independence is
calculated for a contingency table of more than
one degree of freedom by the usual formula

v •> v {*"*' ~ J"" n~iA(r_i)(o_i) — 2^ ,. UJ
Jeii

where r = number of rows, c = number of
columns, f0ij = observed frequency in cell ij
(* = 1, • • - , r; j = 1, • • •, c), fen = expected
frequency in cell ij(i= 1, • • - , » • ; j = 1, • • • , £ ) ,
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statistical interpretation of the outcome is
difficult. A significant value of chi-square indi-
cates nonindependence of the variables, but
provides no information regarding whether
nonindependence occurs throughout the whole
table, or in any specific part of the table. A
nonsignificant value indicates that for the table
considered as a whole there is independence,
but provides no information regarding the
possibility of nonindependence within specific
parts of the table.

By partitioning the total chi-square it is
possible to make additional comparisons of
cells within the whole table. It has been shown
(Irwin, 1949; Kimball, 1954; Lancaster, 1949,
1950; Maxwell, 1961) that an r X c contin-
gency table with (r — l)(c — 1) degrees of
freedom can be subdivided into (r — l)(c — 1)
2 X 2 tables, each with one degree of freedom.
The chi-squares of the individual partitions
are classified as additive components, their
sum being equal to the chi-square calculated
for the whole table. Castellan (1965) has
provided a detailed summary exposition of
these procedures and those for partitioning
2 X N tables into components of more than
one degree of freedom.

For computing chi-square on partitioned
tables of one or more degrees of freedom,
Kastenbaum (1960) has provided a formula
which is applicable to situations where only

dimension has been reduced, thatone is,
either rows or columns, but not both:

y-

A
[2]
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where r = number of rows; c = number of
columns in the whole table; m = number of
columns in the partitioned table, m < c; w,y
= observed frequency in cell ij;

= Z
»'=!

Wi. = Z «</

N = Z Z w» = Z n i = Z nt•L* ^—r iw tvT-3 *-** -J *—' *•
s=l /=! j=l »=1

This procedure has greater generality than
those reviewed by Castellan (1965) because it
is not restricted to partitions of one degree of
freedom from r X c tables or to partitions of
more than one degree of freedom from 2X N
tables. The equation may be used to determine
the contribution of a portion of the table to
the overall chi-square, but with the require-
ment that only the number of rows or only the
number of columns has been reduced.

Determination of Permissible Partitions

Irwin (1949), Kimball (1954), Lancaster
(1949, 1950), and Maxwell (1961) have dis-
cussed a procedure for determining the permis-
sible 2 X 2 partitions. The scheme entails
beginning in one corner of the table and
systematically isolating and eliminating the
single element appearing in that corner. For
every row and column, this procedure results
in comparisons between the first cell and all
succeeding cells pooled, between the second
cell and all succeeding cells pooled, and so on,
until the final comparison between the second-
last and last cells. An example of partitions of
this kind for a 4 X 4 table is shown in Figure 1.

It is easy to demonstrate that other schemes
for partitioning exist, and Kastenbaum (1960)
has given an example; but if the conventional
plan is analyzed, three general rules are
apparent: (a) Each element appears by itself
once and only once. (J) The same combination
of elements do not appear more than once.
(c) The dividing lines of the partitions are
invariant in that once used, no elements may
be combined across them in future partitions.

By following these three rules it is possible
to create new partitioning schemes, thus
further increasing the number of possible sets of

partitions and comparisons for any given table.
An example of such a different kind of scheme
is illustrated in Figure 2 for a 4 X 4 table.

Calculation of Chi-Square for Partitions

Irwin (1949) has presented a general
formula for the (r — l ) (c— 1) independent
2 X 2 tables partitioned from the whole table :

X (011022 + #22011 — #12021 — 021012)2 [3]

where «„ = observed frequency in cell ij of
the 2 X 2 table (i, j = 1, 2) ; ef. = the sum
of the expected frequencies calculated from the
margins of the original table for cells il plus i2
(i = 1,2); e.j = the sum of the expected fre-
quencies calculated from the margins of the
original table for cells Ij plus 2j (j = 1,2); and

E = Z 0i. = Z e.i
i=-l,2 J-=1,2

This formula reduces to the usual expression
for a 2 X 2 table if the expected frequencies
are calculated from the margins of the 2 X 2
table itself; and not, as here, from the margins
of the original table.

To illustrate the use of this formula, the
4 X 4 table discussed previously (Figs. 1 and
2) is now presented with actual numbers and
chi-square values calculated for each of the
partitions (Fig. 3). For both methods of parti-
tioning, the sum of the Xi2 is equal to the
total X9

2.
Snedecor (1956) has shown that the formula

(Y ) -\&-t XjPj/ [4]

where % = margin frequency in category j ;
j — 1, • • •, N ', % = Xj + x'j] Xj = observed
frequency in one cell of category j; and

tf
T = Z % + Z *ti =

3-1 j=

N

a; {_ ̂  *j

i=i

£ = TX/T

tr
= Z

3-1
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FIG. 1. Example of partitioning in a 4 X 4 table using the conventional method of successively

eliminating one column and one row.

can be used for the total chi-square oia.2 X N a 2 X 2 partition from a 2 X N table. If this
contingency table. An equivalent formula for new expression is converted from proportions
a 2 X N table using frequencies can be found to frequencies, the following formula results:
in Walker and Lev (1953). Cochran (1954)
further noted that when the denominator is ^2 _ v (/° ~ f^ rr-i
kept constant, the formula is equal to Xi2 for Fe
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where /<, = observed frequency of partitioned
table; /« = expected frequency of partitioned
table calculated from marginal totals of parti-
tioned table; and Fe = expected frequency of
partitioned table calculated from marginal
totals of original table.

It can be demonstrated that this formula is
applicable to 2 X 2 partitions, not only from
a 2 X N table, but from any r X c table, the
sole restriction being that only one dimension
has been reduced. That is, chi-square calcu-
lated by this formula equals chi-square
calculated by Irwin's formula if one or more
rows (or columns) have been sliced off,
provided that all columns (or rows) remain.
The first five partitions for the 4 X 4 table

meet the criterion of either complete rows or
columns, and the chi-square values for these
partitions can be obtained by either formula.

Equation 5 is also equivalent to Equation 2
(the proof requires only algebraic manipula-
tions) since for any partition which includes
all the categories of one dimension, the sum of
the expected frequencies as determined by the
original marginal totals is equal to the sum of
the observed frequencies. An alternative
statement is that the sum of the expectations
is equal to the expectation of the sum; and,
an even stronger statement is that the sum of
the original expectations is equal to the sum
of the observed in either each row or each
column (but not both). This relationship does
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0.801901 2.992469

X,

1.836734 3.956341 0.000831

X
1.069129 0.033535 4.685159 I . 1871 14

FIG. 3a. Table from Figure 1, with numbers substituted for symbols.

not exist when both dimensions have been
reduced. Nevertheless, it should be apparent
that reducing only the rows or only the
columns may not provide sufficient informa-
tion. It shall now be shown that these reduc-
tions are only first steps in a complete analysis.

Additional Applications and Advantages of the
Alternative Equation

The expression

Fe

is easier to calculate than Irwin's equivalent
formula because in a 2 X 2 table all the
squared deviations are equal. Apart from con-
venience, however, this formula has the
important advantage of not being restricted
to 2 X 2 tables. This fact enables it to have an
application not directly available by Irwin's
formula. If a researcher's interest lies in a
particular configuration consisting of all the
rows (or columns) of the original table, with
one or more of the columns (or rows) elimi-
nated, then for this partition considered as a



PARTITIONING CHI-SQUARE CONTINGENCY TABLES 257

16.563214 1.237229

2.559479

xr
3,547708 0.477911

-1-

1.695502 1.138282 1.392359 I . I 8 7 I I 4
FIG. 3b. Table from Figure 2, with numbers substituted for symbols.
FIG. 3. Examples of partitioning with chi-square values calculated.

whole, that is, not merely as a 2 X 2 partition,
chi-square can be calculated by this formula.
Using Irwin's formula, the chi-square would
have to be found by calculating all the 2 X 2
partitions which contain in single form
elements not included in the partition of
interest, and subtracting the sum of the values
from the chi-square of the whole table.

As an illustration of this principle the first
row has been removed from the 4 X 4 table of
Figure 1, and the Xi2 calculated for Partitions
1, 2, and 3, and X6

2 calculated for Partition 4.
Similarly, the first two rows have been removed
and the Xi2 calculated for Partitions 1, 2, 3, 4,
6, and 7, and X3

2 calculated for Partition 5.
The results are shown in Figure 4a and 4b,
respectively.

Equation 5 has no apparent advantage over
Kastenbaum's Equation 2, other than ease of
interpretation and conceptualization; how-
ever, if the notation is changed and the terms
rearranged, a general equation for any parti-
tion of any mode or degree can be derived.

Let I = number of rows in partitioned table;
m = number of columns in partitioned table;
r = number of rows in whole table; c = number
of columns in whole table; »# = observed fre-
quency in cellij(i= 1 to / to r, j = I torn to c];

m

Mi. = Z ttij
3-1

{

».; = Z nil
r\
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x1.
Xf.
XN

0.601901

2.992469

I. 836734

= 10.932109

"V = 16.563213
/V9

FIG. 4a. Table for six degrees of freedom remaining
after the first row has been removed from the 4 X 4
table of Figure 3, and the chi-square values for each of
the partitions.

en = expected frequency for cell ij calculated
from the margins of the original table
m

e<. = E ««

e.i = E «v

Then Equation S, when only the number of
rows has been reduced, may be written as

;
E »

X(j_i)(C_i)2 = E E
»=1 3-1

E »i.

and by algebra

., -
,•=.1 j=i

, . (E »«)'
-E~— [6]

for the partitioned table. Similarly, if only the
number of columns has been reduced, Equation
5 may be written as

r 0E

i=l j-l
[7]

for the partitioned table. Consider now that
chi-square for the whole table can be written
in the commonly used form

1-2
[8]

A| = 0.601901

Xl = 2.992469

X2= 1.836734

"Xf= 3-956341

X|= 1-069129

X1 0.033535

5.873104

X-563213

FIG. 4b. Table for three degrees of freedom remaining
after the first two rows have been removed from the
4 X 4 table from Figure 3, and the chi-square values
for each of the partitions.

FIG. 4. Examples of partitioning in which some of the
components have more than one degree of freedom.

Therefore, the only differences between Equa-
tions 6, 7, and 8 are the last terms. Equation 8
has N, Equation 6 has the square of the
observed value of each attenuated column
divided by its original expectation, and Equa-
tion 7 has the square of the observed value
of each attenuated row divided by its original
expectation. That is, Equations 6 and 7 take
into account the deviations from proportion-
ality, respectively, by considering the expected
and observed values of the remaining portions
of the columns and rows.

Now, consider the possibility of obtaining
an equation for chi-square when both the
number of rows and the number of columns
have been reduced, that is, both columns and
rows have been attenuated. It can be shown
by the most elementary algebra, although
laboriously lengthy, that

(E
l(i-l)(7JI-l

-E
(E

j ffl
E E eti

[9]
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Let Oi. and o.j be the observed margin
totals in the partitioned table, and 0 be the
total observed frequency in the partitioned
table for which E is the total expected fre-
quency ; then Equation 9 becomes

.
2 _ V V i-) — 2-i Zw

t-l j-1 e»J

where,

3=1

.j - 1; »</

0 =

y-i

All previous equations for chi-square are
special cases of this general equation. Even the
standard Equation 1 is the special case of
exhaustive categories. It is easily shown that
Equation 10 reduces to the other equations
when the appropriate special conditions are
met. This equation may also be written in the
following form, which has interesting prop-
erties, conceptually,

(„.. _ f.\
\nij eH)

(n. — P.
(Pi. g»J

(0-
LUJ

Equation 10 may, therefore, be considered as
a test of independence involving (a) the squared
deviations of observation from expectation
divided by expectation, for each cell; (i) a
correction or subtraction out of the squared
deviations of observation from expectation
divided by expectation, for each margin total ;

and (c) a further correction for having counted
the total observed deviation from expectation
twice. That is, it is a test of independence
corrected for lack of goodness-of-fit in the
margins.

Implications of the General Equation

An additional application of the equation
derived in this paper,

I m ** . .2

"

2 / ) . 2
*•m-l) —

arises in situations where two assumptions of
the chi-square test of independence have not
been satisfied. These common violations in-
volve the pooling of data to obtain desired
minimum expectations, and the failure to meet
the requirement of exhaustive categories.
Lancaster (1950) had previously noted the
relationship between partitioning and pooling ;
the relationships among partitioning, pooling,
and nonexhaustiveness can now be explicitly
determined with the above equation.

Various investigators have consistently cau-
tioned against the use of small cell entries,
some setting the desired minimum expectation
at 5 (e.g., Cochran, 1954), or more conserva-
tively at 10 (e.g., Lewis & Burke, 1949). In
order to follow this advice, a researcher must
often resort to the alternatives of either dis-
carding the categories which do not have
minimum expectations, or pooling these cate-
gories with adjacent categories. Both of these
alternatives are inadequate since they provide
a way of achieving desired minimum expecta-
tions at the expense of introducing other, and
perhaps equally serious, errors.

When data are pooled, error is usually
introduced, since only in trivial cases are the
relationships of the marginal totals not altered.
Moreover, for chi-square, the categories often
do not have any natural ordering, so that
choosing the categories with which the small
cell frequencies will be combined becomes an
arbitrary decision, accompanied by a spurious
lowering or raising of the chi-square value.
There are certain situations where the cate-
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TABLE 1

Ps OT CC

Af

Al

Or

Sc

Se

30

48

19

121

18

102

23

80

344

11

28

20

75

382

141

gories do follow a natural ordering, and pooling
may be a legitimate operation, as in goodness-
of-fit tests. There are also numerous occasions
when an ordering seems apparent but is, in
fact, imposed by the researcher and not the
natural events.

The alternative procedure of discarding
categories is patently an inefficient procedure
since all data should be utilized. More im-
portant, the discarding of categories fails to
satisfy the requirement of exhaustiveness.

The errors caused by either the pooling of
data or the use of nonexhaustive categories
can be eliminated by the technique suggested
in this paper. That is, if one or more rows
and/or columns consist of cells which do not
have desired minimum expectations, instead
of discarding these rows and/or columns, or
pooling them with adjacent entries, a chi-
square value should be calculated for the table
remaining by Equation 10. This value can be
regarded as the contribution of the table re-
maining to the chi-square of the original table.
The degrees of freedom for this table are the

Ps

TABLE 2

OT CC

Af

Al

Or

Sc

Se

34.4

154.7

12.7

105.6

11.6

236.0

*

167.4

15.0

94.7

359.8

1.8

560.0

1 = 254 254

10.9

9.8

72.2

384.6

261.0

646.0

660, p < .01

160.0

91.0

174.0

847.0

170.0

1142.0

n

TABLE 3

Ps OT CC

Or + Sc

Af + Al + Se

117.3

133.8

236.0

453.4

113.1

560.0

456.6

189.4

646.0

1021.0

421.0

1442.0

X2
2 = 21.583895, p < .001

same as they would be if the small expectations
were pooled or discarded completely, but the
value of the statistic is now exact.2

It is interesting to note that although the
requirement of exhaustiveness has been re-
peatedly mentioned in the literature, it has
not been elaborated upon and appears to have
been treated more as a theoretical ideal than
one to be sought in practice. Perhaps this
cursory treatment of the problem in the past
indicated the lack of a satisfactory solution.

AN EXAMPLE

It is perhaps useful to present a real-life
example to demonstrate the utility of these
techniques and the manner in which the general
equation for chi-square facilitates the computa-
tion. The example to be used is Table 35 from
Hollingshead and Redlich (1958, p. 288). It
shall be assumed that the sample of 1,442
constituted a random sample from the popula-
tion of psychotic patients. Each subject was
categorized according to the diagnostic groups

2 It should be noted that in some sense no computed
value of chi-square is exact since the computational
formulas yield values which are only approximately
distributed as chi-square. That is, chi-square is ap-
proached as the number of frequency entries approaches
infinity. In this sense, the components add up exactly
to an approximation.

Ps

TABLE 4

OT CC

Or

Sc

12.7

105.6

117.3

94.7

359.8

453.4

72.2

384.6

456.6

174.0

847.0

1021.0

2.196957, p s .33
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TABLE S

Ps + OT CC

TABLE 7

Ps OT

Af

Al

Se

90.0

100.3

9.0

231.6

10.9

9.8

261.0

189.4

160.0

91.0

170.0

421.0

= 60.116576, p < .001

affective psychoses (Af), alcoholic psychoses
(Al), organic psychoses (Or), schizophrenic
psychoses (Sc), senile psychoses (Se); and
treatments psychotherapy (Ps), organic
therapy (OT), custodial care (CC). The anal-
ysis is done using Equation 10. The term

-. r; is given for each cell and each
(expected)
margin in the tables below, even when the
terms are redundant or corresponding terms
sum to zero. To further facilitate the readers'
following the computations, the individual
terms are shown to only one decimal place,
although the chi-square values are computed
to six decimal places.

Table 1 shows Hollingshead and Redlich's
percentage data converted to frequencies.
Table 2 shows that the original table yields a
chi-square for eight degrees of freedom equal
to 254.254660. (The chi-square value in the
original text obviously contains an inconse-
quential computational error.) Table 3 shows
the chi-square calculation for the diagnostic
groups Or and Sc versus Al, Af, and Se. It
can be seen that these two sets of diagnostic
groups and the treatment categories are not
independent. |: Table 4. shows,, however.^that

TABLE 6

Ps OT

Af

Al + Se

34.4

102.0

133.8

167.4

11.4

113.1

90.0

69.4

231.6

Al

Se

154.7

11.6

102.0

15.0

1.8

11.4

100.3

9.0

69.4

»' = 140,513219, p < ,00}

Xi2 = 29.844013, p < .001

diagnostic categories Or and Sc and the treat-
ment categories must be considered independ-
ent. Table 5 shows that the diagnostic cate-
gories Af, Al, and Se are not independent of
the treatment categories CC versus Ps plus
OT combined. Table 6 shows that Af versus Al
plus Se combined are not independent of Ps
and OT. Table 7 shows that Al and Se are not
independent of Ps and OT.

Although the overall chi-square for eight
degrees of freedom is a very large number, it
may be concluded that the diagnostic cate-
gories of organic psychoses and schizophrenic
psychoses do not significantly differ from each
other in terms of the proportion of patients
given psychotherapy, organic therapy, or
custodial care. The organic and schizophrenic
psychoses groups differ from the three other
diagnostic categories in the proportion of
patients given the three types of treatment,
but the organic and schizophrenic groups do
not differ from each other. All other tests of
independence are significant.

Although this example involves neither the
problem of small expected frequencies or
originally nonexhaustive categories, it is an
interesting illustration. The overall analysis
yields what looks to be an exceedingly "strong"
relationship; but on a more detailed analysis,
the relationship fails to exist where one might
logically expect to find it.
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