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Screening Effects in Multidimensional
Contingency Tables

By MorTOoN B. BROWNT
University of California at Los Angeles
[Received April 1975. Revised September 1975]

SUMMARY

Using the parallelism between the general linear hypothesis and the log-linear
models, we propose that the importance of effects in the log-linear model for multi-
dimensional contingency tables be studied by computing two test statistics for each
effect. These test statistics, called marginal and partial association, indicate the
order of magnitude of the change in the tests-of-fit when the effect is either entered
or deleted from a model. Hence effects may be labelled as definitely needed in the
model, definitely not needed, and ‘“uncertain”. The set of models which require
further analysis is then limited to those models which include the effects definitely
needed and reasonable combinations of the ‘“‘uncertain’ effects.

Keywords: LOG-LINEAR MODEL ; MULTIDIMENSIONAL CONTINGENCY TABLE; MINIMUM
DISCRIMINANT INFORMATION STATISTIC; GENERAL LINEAR HYPOTHESIS ;
MARGINAL ASSOCIATION; PARTIAL ASSOCIATION

1. INTRODUCTION

THE similarity between the estimation and testing of parameters in the log-linear model fit
to data in multidimensional contingency tables and in the linear model for continuous variates
has been emphasized by the representation of the models in Gokhale (1972) and Ku and
Kullback (1974). This correspondence is with the general linear hypothesis model (GLH) in
which a fully crossed design is used with an unequal number of observations in each cell.
In the analysis of both models, the tests of the different effects or interactions are not necessarily
orthogonal.

In considering either of the above approaches, an investigator may have one of a variety
of different objectives in mind. The major purpose of the analysis can be to assess the
magnitude of a particular interaction or to test a specific hypothesis in the presence of some
given set of parameters. Another prime objective can be to find a model which adequately
describes the data. The techniques discussed here are specifically addressed to this problem
of model building.

There are many different reasons why an investigator chooses to build a model. These
reasons influence his interpretation of the importance of the different effects. At times,
such as with census data, the formal tests of significance are meaningless (as they are all likely
to be significant); however, the relative magnitudes of the effects are of importance. If the
investigator can specifically select the order of entry of effects into the model (e.g. Goodman,
1970, 1971a; Ku and Kullback, 1968, 1974), then there exists a unique representation to the
results. When no such unique ordering exists, then a major problem is the assignment of
relative importance to the various effects and the choice of a set of adequate models. Our
purpose is to describe a method to evaluate the relative magnitudes of the effects. We consider
this to be an initial step in any analysis which includes model-building. The investigator
would then tailor the subsequent analysis to his specific aims.

t Permanent address: Department of Statistics, Tel-Aviv University, Tel-Aviv, Israel.
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38 APPLIED STATISTICS

In a four-way table there are 166 different hierarchical models which may be fitted to the data
(Goodman, 1970) and in a five- or more way table there are thousands. Therefore if no a priori
ordering of the models is available, it is desirable to limit the number of models to be fitted.

A similar problem arises when using the GLH model. Francis (1973) has compared the
ANOVA tables produced by several GLH computer programs. A major problem that he
encountered was the lack of a uniform definition of the sum of squares to be used to test a
given effect. Nelder (1974) states that this problem has been solved. However, a unique
solution exists only if the order of entry of the effects into the model is predetermined.
Otherwise, a multiplicity of solutions is possible.

Nevertheless, some screening of the effects or interactions in the log-linear model is
necessary in order to limit the number of models whose tests-of-fit need to be evaluated. It
is reasonable to want a summary table from which, upon examination, effects can be classified
into three groups: definitely needed in the model, definitely not needed, and “‘uncertain”.
Tests-of-fit need then only be computed for those models which contain the effects definitely
needed and reasonable combinations of the “uncertain” effects.

Due to non-orthogonality no single test can be performed to determine the importance of
an effect. Therefore we propose that two tests be computed for each effect in such a manner
as to put approximate bounds on the change in the test-of-fit of a model achieved when that
effect is either added to or deleted from the model. Although the finding of exact bounds
requires the evaluation of the tests-of-fit of all pairs of models which differ only in that effect,
two ad hoc tests can be used. These tests, called marginal and partial association and explained
in Section 3, indicate the order of magnitude of the change in the test-of-fit produced by
entering the effect into the model. Therefore these tests are used to categorize the effects or
interactions by importance. Then models containing those effects definitely needed and other
effects of possible importance are selected and their tests-of-fit are calculated.

We find it useful also to compute the tests-of-fit of the full kth-order models for all k
where the kth-order model is defined as the model containing all interactions having k factors
or less. These provide tests (for all k) that all k+1 and higher order interactions are simul-
taneously zero. These tests help us judge the number of false significances attained when
each effect, and each model, is tested separately.

Four examples are presented to illustrate the use of these tests. All models are fitted by
the algorithm in Haberman (1972).

2. NOTATION

Consider a four-dimensional 7 xJ x Kx L contingency table, where the indices pertain to
variables 4, B, C, D, respectively. Let f;;, be the observed frequency in cell (3,j, k,I) of the
table and Fy;;; = E(f;) its expected value. Then, in the notation of Goodman (1971a), the
saturated model is written as

log Fyjpg = 04 M4+ AP + AZ+ AP+ MB + MEC+ AP+ A0 + AZP + AP
+ MBC + MEDP + MTP + AEIP + M°P,

where the A’s satisfy the usual conditions:

TM=0, ., TMEF=BMT=O0, ., ZMFO=BMEO= NAFO=0...,

ABCD — ABCD — ABCD — ABCD -
; A’iﬂd - ? A’ijkl - % }\'i,;ikl - % }\ijkl =0.

The order of the effect A is the number of factors in the superscript. In identifying an
effect, the subscript will be omitted. When referring to an interaction, only the superscript
will be written.

A model is hierarchical if the presence of a kth-order effect A4EC-+ in the model implies
the presence of all effects whose factors are subsets of 4BC.... For example, inclusion of
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SCREENING EFFECTS 39

A4B in the model implies that A4, AB and 6 are also in the model. Hierarchical models may
therefore be specified uniquely by the set of highest order interactions whose presences imply
those of the remaining effects. This set will be called the minimal defining set for the model.
For example, (4B, AC) defines the model 6+ A4+ AB 4 XC4 A\4B 4 )4C, The model in which
all three- and four-factor interactions are simultaneously zero is (4B, AC, AD, BC, BD, CD),
the full second-order model.

The adequacy of fit of a model is tested by either the goodness-of-fit test

X2 = 2 (fyiu—Fyu)*/ Fijm
ikl
or the likelihood ratio statistic
X3z = Zi%‘ndﬁjkz log, (f;jkl/Eijkl)’

The latter is the same as the minimum discriminant information statistic (Ku and Kullback,
1974). The y3,;, has an additive property under partitioning. That is, if M; and M, are two
models such that the marginals fit by M, are a subset of those fit by M,, then

Xarr(My) = X3, .(My | M) + X37(Mp).

This additive property does not hold for the goodness-of-fit statistic (Ku and Kullback,
1974). Therefore we use only x%,; in the following.

3. MARGINAL AND PARTIAL ASSOCIATION

The test that the marginal k-factor interaction is zero (or that the marginal association
between k factors is zero) is defined as a test that the k-factor interaction is zero in the
k-dimensional marginal sub-table indexed by those k factors. It may be performed by
collapsing the table over all factors not in the k-factor interaction and then testing that the
highest order (the kth order) interaction in the marginal sub-table is zero. An equivalent
test is obtained by computing the difference in the tests-of-fit of two models, one whose
minimal defining set is solely the interaction and the second which differs from the first in
that the k-factor interaction is not included in the model. For example, to test that the marginal
association of 4BC is zero either test the fit of the model (4B, AC, BC) in the marginal
sub-table indexed by the factors 4, B and C or calculate the difference between the tests-of-fit
of the two models (4BC) and (4B, AC, BC) applied to the original table.

The test that the partial k-factor interaction is zero (or that the partial association between
k factors is zero) is defined as the difference between the tests-of-fit of two appropriate hier-
archical models which differ only in the k-factor interaction. Obviously there are many such
pairs of models. A reasonable requirement is that all factors not among the k factors be
treated symmetrically. This limits our consideration to two pairs of models. One pair includes
the model that contains all the interactions of order k but none of higher order. The other
pair includes the model which contains all effects such that when the k-factor interaction of
interest is omitted from the model, the model remains hierarchical. This means that the
model contains all interactions of order k and higher order which do not include the k-factor
interaction as a subset. Let us test the partial association of 4B in the four-way table. Then
the first pair of models is (4B, AC,AD, BC,BD,CD) and (AC,AD, BC,BD,CD), and the
second pair is (4B, ACD,BCD) and (ACD, BCD). Both pairs differ only in the interaction
AB. Our choice is to use the first pair on the principle of parsimony. That is, a primary
interest is to limit the model to as low an order as possible. In the first pair of models no
interaction of order higher than k is included, whereas, in the second, terms of higher order
may be included but not that used by Birch (1965) and Bishop et al. (1975).1

¥ Marginal and partial association are special cases of the ‘overcondescending extreme’ and ‘overextending
extreme’ respectively as defined by Bishop et al. (1975).
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40 APPLIED STATISTICS

In summary, the test of partial association between k factors is defined as the difference in
fits between the full k-order model and the k-order model excluding the k-factor interaction
being tested. This definition is consistent with that used by Goodman (1969) in the three-way
table.

If the tests-of-fit are by the maximum-likelihood statistic, then both the tests of marginal
and partial association are differences between two x?2 statistics. Therefore under the null
hypothesis the test statistics are asymptotically distributed as x® with degrees of freedom
(d.f.) equal to the difference in d.f. of the tests of the two models. The d.f. may be calculated
directly in the same manner as used for ANOVA effects.

The two test statistics of marginal and partial association do not bound all possible values
of the difference between the fits of two models differing only in the interaction being tested.
However, the two tests indicate clearly the relative magnitude of the difference which is
likely to be found. Therefore if both test statistics are large (significant in some sense), the
k-factor interaction is required in the model. If both are small, the interaction is not needed
in the model. The remaining interactions cannot be definitely included or excluded from the
model. Hence in a second pass at the data, relevant models containing all interactions
definitely necessary and reasonable combinations of the ‘“‘uncertain” interactions need to
be fitted.

We emphasize the need to use the two tests simultaneously when screening effects. As
the examples show, the use of only one may lead to incorrect inferences.

4. DIFFERENCES BETWEEN TESTS-OF-FIT

Let F{1); and F(2), be the expected values of cell ijk! under two different models M, and
M, such that the effects in M; are a subset of those in M,. Then

Xirr(M) — X3z (Mp) = 23, fismloge (fijulF %l)cl) =23 fijualoge (fijul F. ?l)cl)
=23 fijuloge FEulF 3.

We now show that the tests of marginal and partial association are equivalent for main
effects. In a four-way table the test of partial association for factor D is the difference between
the tests-of-fit of the models (4,B,C) and (4, B,C, D). The expected values under these
models are

fo 3. LelLf2) and fi f; fualf3.

respectively where the dot subscript indicates summation over the omitted index. Therefore
the test of partial association is

_ o [feSaSatalf,
X (M) =i (M) = 2.3 fylog, [—ﬁ...'fj..' vl

= 2ijzldfijkl log, [£../(f../D)]
=22 falog [ (../D)]

which is the test of marginal association of D.

In a similar manner it can be shown that whenever two models differ by only one effect
and the expected values of both can be expressed in closed form (expressed as a product of
marginal frequencies), the difference between the tests-of-fit of the models is the test of marginal
association of the one effect by which they differ. This rule can be successively applied to
compare models which differ by more than one effect where the expected values at each step
can be expressed in closed form. (Goodman, 1971b, gives more general rules for differences
between tests-of-fit.)
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In the three-way table the expected values of all models except that containing all three
two-factor interactions can be expressed in closed form. Therefore, it is easily shown that

x*(marginal association of AB) = y%(4B)— (4, B)

= x¥(AB, AC)— y*(AC, B) = x*(AB, BC)—x*(4, BC)
and therefore

x%(4, B,C)—x*(4B, AC, BC)
= x*(4, B, C)—x*(4, BC) +x*(4, BC) — x(AB, BC) +x*(AB, BC)— x*(AB, AC, BC)
= x*(marginal association of BC)+ y*(marginal association of AB)
+ x*(partial association of AC).

This is true for any permutation of 4, B and C in the three-way table. Hence, by equating
the right-hand side of the above equation for any two permutations, it can be noted that the
differences between the marginal and partial associations of each of the three two-factor
effects are identical. It is also possible to evaluate all models in the three-way table given
both the marginal and partial associations of all effects.

5. THREE-WAY TABLES

The tests of marginal and partial association for a 23 table (S = survival, T = treatment,
C = clinic) presented by Bishop (1969) are given in Table 1. Note that both SC and TC

TABLE 1

Tests of marginal and partial association on an example containing three dichotomous
variables. S = survival; T = time duration of prenatal care; C = clinict

X3-marginal X3 -partial
Factors d.f. association Probability association Probability
Survival 1 767-8 0-000 767-8 0-000
Time 1 7-1 0-008 7-1 0-008
Clinic 1 80-1 0-000 80-1 0-000
ST 1 56 0-018 0-0 0-844
SC 1 17-8 0-000 12:2 0-001
TC 1 193-7 0-000 188-1 0-000
STC 1 00 0-835 0-0 0-835

T Presented by Bishop (1969).

are significant in both tests. However, ST is significant only with respect to marginal associa-
tion. Therefore the two possible models are (SC,TC) and (SC,TC,ST). Since the latter
model is the full second-order model, the difference in tests-of-fit of the two models is equal
to the test of partial association of ST. As this is small, the model chosen is (SC, TC). That
is, survival is independent of treatment conditional upon clinic. This is also the conclusion
found by Bishop.

A second example of a 2% experiment has been analysed by Bartlett (1935), Lancaster (1951),
Bhapker and Koch (1968) and Bishop (1969). The factors are L = length of planting, 7 = time
of planting and S = survival. The analysis of the data appears in Table 2. The interactions
LS and ST are highly significant in both tests. Again the two models to be compared (LS, ST)
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and (LS, LT, ST) include the full second-order model. Therefore the partial association of
LT is of interest. As this is significant, the model chosen is (LS, LT, ST).t

In both examples the relative importance of the factors are readily apparent by examining
the tests of marginal and partial association. However, the conclusions reached in the two
examples are opposite. It is clear that both tests are necessary in order to draw valid
conclusions. '

TABLE 2

Tests of marginal and partial association for data on the propagation of plum
rootstocks as a function of the length of cutting and the time of plantingt

Xx2-marginal x>-partial

Factors d.f. association Probability association Probability
Length 1 0-0 1-0 ' 0-0 1-0
Survival 1 437 0-000 437 0-000
Time 1 0-0 1-0 0-0 1-0

LS 1 45-8 0-000 512 0-000
LT 1 0-0 1-0 53 0-021
ST 1 97-6 0-000 102-9 0-000
LST 1 23 0-130 23 0-130

T The data appear in Bartlett (1935), Lancaster (1951), Goodman (1964), Bhapker and Koch
(1968) and Bishop (1969).

6. THE FOUR-WAY TABLE

The data from a consumer trial of detergents presented by Ries and Smith (1963) have
also been analysed by Ku and Kullback (1968) and Goodman (1971a). The four factors are:
A = the temperature of the water used, B = the previous use of detergent brand M, C = the
preference for detergent brand X over brand M and D = the softness of the laundry water
used. The tests of marginal and partial association for all the interactions appear in Table 3.

It is apparent from the results in the table that both 4 and BC must be included in the
model. All other terms except AC and 4D are non-significant. The tests of these two inter-
actions are of questionable significance. Therefore only models which contain both 4 and
BC and combinations of AC and AD need be tested. The tests-of-fit of these models are:

Model X3 d.f.
(4,BC) 22:8 19
(4AC, BC) 184 18
(4D, BC) 162 15

(AC,AD,BC) 119 14

All these tests are non-significant. Therefore (4, BC) is the most parsimonious model possible.
The reduction in ¥ between the tests-of-fit of two models may be significant although each
test-of-fit is non-significant. This seeming contradiction is a result of not using simultaneous
test procedures for testing the difference between the models. Therefore because of external
considerations, it may be desirable to use a model containing more than the minimal number
of terms. These numerical results do not differ from the other authors. However, the emphasis
here is on the manner in which the effects are screened for inclusion in or exclusion from the
model.

t Since the LT margins were fixed by design, the LT effect should be included a priori. This example is
given to illustrate the danger in the use of marginal association as the sole test of an effect.
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It is worth noting that the expected values of the above models can be expressed in closed
form. Therefore, the difference between the tests-of-fit of any two models is found by the
addition and subtraction of the x2 tests of marginal association of the effects which appear
in one model but not in the other.

TABLE 3

Tests of marginal and partial association for a consumer blind trial of detergentst

x%-marginal x2-partial
Factors d.f. association Probability association Probability
A: temperature 1 732 0-000 732 0-000
B: previous use of M 1 19 0-166 19 0-166
C': preference of X over M 1 0-1 0-801 0-1 0-801
D: softness of water 2 0-5 0-778 05 0-778
AB 1 1-3 0-263 0-7 0-390
AC 1 44 0-037 3.7 0-053
AD 2 61 0-047 6-1 0-048
BC 1 206 0-000 199 0-000
BD 2 11 0-584 1-0 0-605
CD 2 04 0-821 0-2 0-898
ABC 1 28 0-095 22 0-136
ABD 2 1-6 0-445 14 0:502
ACD 2 01 0-941 0-2 0-922
BCD 2 53 0-069 4-6 0-102
ABCD 2 0-7 0-692 0-7 0-692

Simultaneous tests that all interactions of the same order are zero.

Order d.f. x?  Probability

1 5 118-6 0-000
2 9 429 0-001
3 7 99 0-363
4 2 0-7 0692

+ Presented by Ries and Smith (1963), Ku and Kullback (1968) and Goodman (1971a).

In our last example we analyse survey results of Hoyt ez al. (1959) which also appear in
Kullback et al. (1962) and Ku and Kullback (1968). The four factors are: R = rank in high
school (3 categories), P = post high school level (4), S =sex (2) and L = level of father’s
occupation (7). The results of the tests appear in Table 4.

All two-factor interactions must appear in the model. The interaction SLP is also needed,
whereas SRP is not. Both SLR and LRP require further study. Therefore the tests-of-fit of the
models in Table 5 were computed.

Table 5 also includes the differences in the tests-of-fit which result when the specified effect
isadded to the model. Note that the differences ascribed to the various effects do not necessarily
lie between the tests of marginal and partial association. However, the results are close to
one of the tests.

Although in many cases the tests of marginal and partial association are similar, inspection
of Table 4 shows that they may differ greatly. The tests for LR are 172-2 and 37-2. Admittedly
both are highly significant, but the difference does indicate the possible magnitude of the
influence of the marginal constraints. This re-emphasizes the need to use both tests simul-
taneously.
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TABLE 4
Tests of marginal and partial association for survey results on Minnesota high school
graduatest
X%y -marginal X3g-partial
Factors d.f. association Probability association Probability
Sex 1 172-8 0-000 172-8 0-000
Level (occupation) 6 45479 0-000 45479 0-000
Rank (high school) 2 388-8 0-000 388-8 0-000
Post high school status 3 9851:6 0-000 9851-6 0-000
SL 6 58-2 0-000 59-8 0-000
SR 2 387-4 0-000 3879 0-000
SP 3 361-9 0-000 325-6 0-000
LR 12 1722 0-000 37-2 0-000
LP 18 1422-8 0-000 1250-9 0-000
RP 6 1062-1 0-000 889-2 0-000
SLR 12 19-3 0-082 27-0 0-008
SLP 18 46-8 0-000 52-5 0-000
SRP 6 33 0-774 30 0-809
LRP 36 513 0-047 51-2 0-048
SLRP 36 45-1 0-141 45-1 0-141

Tests that all k-factor interactions are simultaneously zero.

Order  d.f. Xaz Probability
1 12 14961-1 0-000
2 47 33180 0-000
3 72 127-2 0-000
4 36 451 0-141

T Presented by Hoyt et al. (1959), Kullback et al. (1962) and Ku and Kullback (1968).

TABLE §
Tests-of-fit of some models to the data in the example of Table 4

Model Effect added XL d.f. Probability
(SL, SR, SP, LR, LP, RP) 1723 108 0-000
(SLP, RP, LR, SR) 1259 90 0-008
ASLP 464 18 0-000
(SLP, SLR, RP) 989 78 0-055
ASLR 270 12 0-008
(SLP, LRP, SR) 75-7 54 0-027
ALRP 50-2 36 0-058
(SLP, SLR, LRP) 481 42 0-240
ASLR 276 12 0-006
ALEP 50-8 36 0-052
(SLP, SLR, LRP, SRP) 45-1 36 0-142
ASEP 30 6 0-809
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7. DISCUSSION

The emphasis here is on limiting the number of effects which need to be considered as
part of the final model. Other methods can be used to attain the same goal. For example,
Goodman (1971a, 1973) describes stepwise techniques. The advantage of the procedure
described here is in the small number of times the investigator must initiate a computer run.
The first run consists of generating the tests of marginal and partial association. On a second
run the small number of models which are good possibilities are fitted. Other stepwise methods,
if not performed interactively, require far more initiations of computer runs and therefore
involve longer delays before the final analysis.

On the first run we find it useful to compute a table containing tests-of-fit of the full kth-
order model for all £ and print the differences between the tests. This yields simultaneous
tests that all k-factor interactions are zero. This table aids in judging the magnitude of the
lack-of-fit of various models before their evaluation. See Tables 3 and 4.

The choice of the model is usually not the last step in the analysis. Estimation of the
cell frequencies, of the parameters of the models, of possible contrasts fit to the data, etc.,
naturally follow. However, all are predicated upon the choice of an adequate model.

In some problems the factors may be categorized into two or more groups such as dependent
and independent. The investigator may then choose to modify the definitions of marginal
and partial associations in an appropriate manner.
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