Lecture

Sections 4.2 and 4,3 . Maximum/ Minimum Values of Functions and
$4|10| 01$ Derivatives/Shapes of Curves.
Tues.
hectare
Here we will determine what values of x will give us the largest and smallest (absolutely or relatively) values of $f(x)$.

Very often this kind of information is needed in applications.

Given a function $f(x)$, we will be making use of $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

We will be interested in points x where the graph of $f(x)$ changes in some way. Specifically:

1) peaks: fine. f f oc.
2) valleys:
forest. Ffinc.
3) critical points: includes where peaks and valleys occur
4) inflection points: where concavity (bending of a curve) changes

0

1. Local Maximum: a peak (among other peaks)

Locally, this is the highest point around.

- with derivative $f^{\prime}=0$

Concave down with $f^{\prime \prime}()<0$
2. Local Minimum: a valley (among other valleys)

Locally, this is the lowest point around.

3. Critical Points : $\frac{\text { Defn }}{\text { if either }} x=p$ is a criticalpoint

$$
f^{\prime}(p)=0
$$

or

$$
f^{\prime}(p)=\text { undefined }(=\infty)
$$

E.g.,

$f^{\prime}(0)$ undefined $\Rightarrow x=0$ is a critical point
-267-

- WARNING:

If f has a local max or min at $x=p$, then $f^{\prime}(p)=0$.
HOWEVER, if $f^{\prime}(p)=0$, f may or may not have a local max or min at $x=p$!

Egg,

$f^{\prime}(0)=0$ But there is no local max or min at $x=0$

First / Scone Derivative Tests for locating Local Maxima and

Minima
local max

FIRST DERIVATIVE TEST:
Assume $f^{\prime}(p)=0$.
(1) If $f^{\prime}(x)>0$ "right before" $x=p$ and $f^{\prime}(x)<0$ "right after" $x=p$, then $f(x)$ has a LOCAL MAX at $x=p$.
(2) If $f^{\prime}(x)<0$ "right before" $x=p$ and $f^{\prime}(x)>0$ "right after" $x=p$, then $f(x)$ has a LOCAL MIN at $x=p$
(3) OTHERWISE, $f(x)$ DOES NOT HAVE A LOCAL MAX or MIN at $x=p$

MEMORIZE
This test will always work
This test will not always work

SECOND DERIVATIVE TEST
Assume $f^{\prime}(p)=0$.
4/10/01 (1) If $f^{\prime \prime}(p)<0$, then $f(x)$ has a LOCAL MAX at $x=p$,
(3) If $f^{\prime \prime}(p)=0$, then this TEST FAILS. GO TO FIRS DERIVATIVE TEST.

E．g．，Failure with the SECOND DERIVATIVE TEST．

$f^{\prime}(0)=0$
$f^{\prime \prime}(0)=0$
Neither a local max or min

$$
\begin{aligned}
& f^{\prime}(0)=0 \\
& f^{\prime \prime}(0)=0
\end{aligned}
$$

A local min

Example，$f(x)=x^{3}$ ．

$$
\left.\right|_{W}|1| 01 f^{\prime}(x)=\frac{d}{d x}\left(x^{3}\right)=3 x^{2}
$$

Lecture $f^{\prime}(x)=0 \Rightarrow 3 x^{2}=0 \Rightarrow x^{2}=0 \Rightarrow x=0$

POINT

2 nd Deriv．Test：

$$
f^{\prime \prime}(x)=\frac{d}{d x}\left(3 x^{2}\right)=3(2 x)=6 x
$$

$$
f^{\prime \prime}(0)=6(0)=0 \text { TEST FAILS }
$$

\therefore Try 1筀 Deriv．Test
plugin CRITICAL Point

Hst Deriv．Tret：

Choose a sample point "right betore"
$x=0$, like $x=-1$
choose a sample point "right after" $x=0$, like $x=1$

$$
\begin{aligned}
& f^{\prime}(-1)=3(-1)^{2}=3>0 \Rightarrow f^{\prime}(x)>0 \text { right before } x=0 \\
& f^{\prime}(1)=3(1)^{2}=3>0 \Rightarrow f^{\prime}(x)>0 \text { right after } x=0
\end{aligned}
$$

lecture.' ' $f(x)$ has NEITHER a local max or min $\uparrow \quad$ at $x=0$.

Example. $f(x)=x^{2}$

$$
\left\{\begin{array}{l}
f^{\prime}(x)=\frac{d}{d x}\left(x^{2}\right)=2 x \\
f^{\prime}(x)=0 \Rightarrow 2 x=0 \Rightarrow \begin{array}{l}
x=0 \\
\begin{array}{l}
\text { CRITICAL } \\
\text { POINT }
\end{array}
\end{array}
\end{array}\right.
$$

2 nd Deriv. Test :

$$
f^{\prime \prime}(x)=\frac{d}{d x}(2 x)=2
$$

$$
f^{\prime \prime}(0)=2>0 \Rightarrow f(x)=x^{2} \text { has a LOCAL MIN }
$$

plug in CRITICAL Point at $x=0$

o

Concavity and the Test for an Inflection Point

W
Lecture The following is a definition of inflection point, which also serves as a test for an inflection point.
$x=p$ is an INFLECTION POINT of $f(x)$ if
(1) $f^{\prime \prime}(p)=0$
(2) concavity changes at $x=p$ where either
(a) $f^{\prime \prime}(x)>0$ "right before" $x=p$ and $f^{\prime \prime}(x)<0$ "right after" $x=p$
Lecture
$f^{\prime \prime}(x)<0$ "right before" $x=p$ and $\frac{f^{\prime \prime}(x)>0 \text { "right after" } x=p}{\text { MEMORIZE }}$

Example. $f(x)=x^{3} . \quad \frac{y}{\prod_{0}} x$

$$
4|13| 01 f^{\prime}(x)=\frac{d}{d x}\left(x^{3}\right)=3 x^{2}
$$

F
picture

$$
\begin{aligned}
& f^{\prime \prime}(x)=\frac{d}{d x}\left(3 x^{2}\right)=3(2 x)=6 x \\
& f^{\prime \prime}(x)=0 \Rightarrow 6 x=0 \Rightarrow x=0
\end{aligned}
$$

CANDIDATE FOR INFLECTION POINT

These are sample points chosen "right before" and "rightater"

$$
x=0
$$

$\left.\begin{array}{l}f^{\prime \prime}(-1)=6(-1)=-6<0 \Rightarrow f^{\prime \prime}(x)<0 \quad \text { right before } x=0 \\ f^{\prime \prime}(1)=6(1)=6>0 \Rightarrow f^{\prime \prime}(x)>0 \\ \text { right after } x=0\end{array}\right\}$

Change in concavity
at $x=0$ at $x=0$
$\therefore x=0$ is an INFLECTION POINT of $f(x)$

Example. Inflection points are always between local max and min:

Examples.

1. (HW Exenise 2, p. 292 , Sect. 4.3.)

(a) Where is g concave up? (Give open intervals.)
(b) Where is g concave down? (Give open internals.)
(c) What are the inflection points of g ?
(a) $(-2,2) \cup(7,9)$
(b) $(2,4) \cup(4,7)$

(or $(x, y)=(2,2))$ is not a point is a point of of inflection, even inflection where though g changes g charges from concavity from concourse up to concave down to concave down concorde up
2. (HW Exenise 5, P. 292, Sect. 4.3.)

What are the inflection points of f ?

Inflection p ts are (at) $x=1$ and $x=7$ where $f^{\prime \prime}$ changes sigh (from neg, to pos. or poor, to neg.)
($x=4$ is not on inflection point, since $f^{\prime \prime}$ dots not change sign!!

- $276 a$ -

3. Let

$$
f(x)=x^{4}+12 x^{3}+16 x^{2}
$$

4|13/01 Find all local maxima and uninima.
F
lecture

$$
\begin{array}{l|l}
4|13| 01 & f(x)=x^{4}+12 x^{3}+16 x^{2} \\
F & f^{\prime}(x)=4 x^{3}+36 x^{2}+32 x \\
\text { Lecture } &
\end{array}
$$

$$
f^{\prime \prime}(x)=12 x^{2}+72 x+32
$$

Set $f^{\prime}(x)=0$ and solve for x :

$$
\begin{aligned}
f^{\prime}(x)=0 & \Rightarrow 4 x^{3}+36 x^{2}+32 x=0 \\
& \Rightarrow 4 x\left(x^{2}+9 x+8\right)=0 \\
& \Rightarrow 4 x(x+8)(x+1)=0 \\
& \Rightarrow \frac{x=0, x=-1, x=-8}{3 \text { CRITICAL POINTS }}
\end{aligned}
$$

(candidates for being local max's and min's)

2ㅁd Deriv. Test:

$$
\begin{aligned}
& f^{\prime \prime}(0)=12(0)^{2}+72(0)+32=32>0 \Rightarrow f(x) \text { has a } \\
& \text { LOCAL MIN } \\
& \text { at } x=0 \\
& f^{\prime \prime}(-1)=12(-1)^{2}+72(-1)+32=-28<0 \Rightarrow f(x) \text { has a } \\
& \text { LocAL MAX } \\
& \text { at } x=-1
\end{aligned}
$$

$f^{\prime \prime}(-8)=12(-8)^{2}+72(-8)+32=224>0 \Rightarrow f(x)$ has a LOCAL MIN at $x=-8$

Sketch of $y=x^{4}+12 x^{3}+16 x^{2}$:

3. (HW Exercise 7, p. 292 , Sect. 4.3.) Let

$$
f(x)=x^{6}+192 x+17
$$

(a) Where is f increasing and decreasing?
(b) Where are the local $\max ^{-f^{\prime}}$ and m in of f ?
(c) Where is f concave up $\boldsymbol{p}^{f^{\prime \prime}>0}$ and down?

What are the inflection points of f ?

$$
f^{\prime \prime}=0
$$

$$
\begin{aligned}
& f(x)=x^{6}+192 x+17 \\
& f^{\prime}(x)=6 x^{5}+192 \\
& f^{\prime \prime}(x)=30 x^{4}
\end{aligned}
$$

Set

$$
\begin{aligned}
f^{\prime}(x)=0 & \Rightarrow 6 x^{5}+192=0 \\
& \Rightarrow 6 x^{5}=-192 \\
& \Rightarrow x^{5}=-\frac{192}{6}=-32 \\
& \Rightarrow x=-2 \text { (RITICAL poINT } \\
& \begin{array}{l}
\text { (candidate tor booing } \\
\text { a local max or a } \\
\text { local min) }
\end{array}
\end{aligned}
$$

Check to see if f has a local max or min using the FIRST DERIVATIVE TEST ;

Sample points "right before" and "right after" $x=-2$

f has one local min at $x=-2$ and nothing else, and so no local max.

The LOCAL MIN VALUE of f is then

$$
\begin{aligned}
f(-2) & =(-2)^{6}+192(-2)+17 \\
& =64-384+17 \\
\text { plug in } p^{+} & =-303
\end{aligned}
$$

at which
local min occurs

Check to see if f has any inflection points:
$4|16| 01 \mid \operatorname{set} f^{\prime \prime}(x)=0 \Rightarrow 30 x^{4}=0$

M
lecture

$$
\Rightarrow x^{4}=0
$$

$\Rightarrow x=0$ Candidate for INFLECTION POINT

$$
\begin{gathered}
-280- \\
f^{\prime \prime}(-1)=30(-1)^{4}=30(1)=30>0 \\
f^{\prime \prime}(1)=30(1)^{4}=30(1)=30>0
\end{gathered}
$$

$\therefore, x=0$ is NOT an inflection point of f, since $f^{\prime \prime}$ does not change sign around $x=0$!

SKETCH OF $f(x)$:

$$
-281-
$$

SUMMARY:
f has one local min at $x=-2$,
f has no local max.
f has no inflection points.
f is decreasing on $(-\infty,-\alpha)$
f is increasing on $(-2, \infty)$
f is concave up on $(-\infty, \infty)$

Finding Global (or Absolute) Maxima and Minima
Tues.
Lecture [We now will focus primarily on Section 4,2. Previously we were focusing on Section 4,3.] We will consider

CONTINUOUS FUNCTIONS
(i.e., no holes or breaks or jumps in their graphs)

Closed intervals
(i.e., $a \leq x \leq b$ or $[a, b]$ versus $a<x<b$ or (a, b)).

$-283-$
We will look for the following:

1. THE global (or absolute) maximum value of f, which may be achieved at one or more locations in the graph of $y=f(x)$ on $[a, b]$.
2. THE global (or absolute) minimum value of f, which may be achieved at one or more locations in the graph of $y=f(x)$ on $[a, b]$.

0
We are given a guarantee by the following theorem:

THEOREM, Let f be a continuous function on the closed interval $[a, b]$. Then f will have exactly one global maximum value and exactly one global minimum value.

Remark. F may have many or no local maximum values or local minimum values.

RULE OF THUMB.

1. Global maximum value of f

- will occur at one (o rmore) of the local maxima of f or at one (or both) of the endpoints, $x=a$ and $x=b$.
$-284=$

2. Global minimum value of f - will occur at one (or more) of the local minima of f or at one (or both) of the endpoints, $x=a$ and $x=b$.

We are given a recipe to find locations of global max and min of f when f is continuous on a closed internal $[a, b]$

RECIPE.
STEP 1. Find all critical points of $f(x)$:
Where $f^{\prime}(x)=0$ (or $f^{\prime}(x)=\infty$).
Optional: Determine if critical pts correspond to local max and for min.

STEP 2. Evaluate $f(x)$ at EVERY critical point AND at BOTH endpoints $(x=a, x=b)$.
STEP 3. Global max value $=$ largest value of $f(x)$ from STEP 2

$$
\text { Global min value }=\underset{\text { smallest value of }}{ } \begin{aligned}
f(x) \text { from STEP } 2
\end{aligned}
$$

- 286 -

Example. (HW Exercise 38, p. 280.)
Find absolute $(=$ global $) \mathrm{max} / \mathrm{min}$ values of

$$
f(x)=x^{3}-12 x+1 \text { on }[-3,5]
$$

Note: $f(x)=$ polynomial $\Rightarrow f(x)$ is continuous on $(-\infty, \infty) \Longrightarrow f(x)$ is certainly continuous on $[-3,5]$.

STEP 1. Critical Points:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-12 \\
& f^{\prime}(x)=0 \Rightarrow 3 x^{2}-12=0 \\
& \Rightarrow 3 x^{2}=12 \\
& \Rightarrow x^{2}=4 \\
& \Rightarrow x=-2, x=2
\end{aligned}
$$

STEP 2. Evaluate $f(x)$ at $x=\underbrace{-2,2}_{\substack{\text { CRTNCAL } \\ \text { POTS }}}, \underbrace{-3,5}_{\text {ENDPOINTS }}$

$$
f(x)=x^{3}-12 x+1:
$$

$$
f(-2)=(-2)^{3}-12(-2)+1=17
$$

$$
f(2)=(2)^{3}-12(2)+1=-15 \text { SMALLEST }
$$

$$
f(-3)=(-3)^{3}-12(-3)+1=10
$$

$f(5)=(5)^{3}-12(5)+1=66 \longleftarrow$ LARGEST

$$
-287(1)-
$$

STEP 3. Absolute (=global) maximin values of $f(x)$:

4117101 Tues, Lecture $f(2)=-15$ absolute min value at $x=2$
\square

