
Towards Optimal Community Detection:

From Trees to General Weighted Networks

Thang N. Dinh and My T. Thai
Computer & Information Science & Engineering

University of Florida, Gainesville, FL 32611

Email: {tdinh, mythai}@cise.ufl.edu

Abstract

Many networks including the Internet, social networks, and biological
relations are found to be naturally divided into communities of densely
connected nodes, known as community structure. Since Newman’s sug-
gestion of using modularity as a measure to qualify the goodness of com-
munity structures, many efficient methods to maximize modularity have
been proposed but without optimality guarantees. In this paper, we study
exact and theoretically near-optimal algorithms for maximizing modular-
ity. In the first part, we investigate the complexity and approximability
of the problem on tree graphs. Somewhat surprisingly, the problem is still
NP-complete on trees. We then provide a polynomial time algorithm for
uniform-weighted trees, a pseudo-polynomial time algorithm and a PTAS
for trees with arbitrary weights. In the second part, we propose sparse
metric, a set of linear programming formulations for general graphs. By
exploiting the graph connectivity structure, sparse metrics helps to reduce
substantially the number of constraints, thus, vastly improve the running
time for solving linear programming and integer programming. As a re-
sult, networks of thousands of vertices can be solved in minutes while the
current largest instance solved with mathematical programming has less
than 250 vertices.

1 Introduction

Many complex systems of interest such as the Internet, social, and biological
relations, can be represented as networks consisting a set of nodes which are
connected by edges between them. Research in a number of academic fields
has uncovered unexpected structural properties of complex networks including
small-world phenomenon [1], power-law degree distribution [2], and the existence
of community structure [3] where nodes are naturally clustered into tightly con-
nected modules, also known as communities, with only sparser connections be-
tween them. Finding this community structure is a fundamental but challenging
problem in the study of network systems and not yet satisfactorily solved, de-

1

spite the huge effort of a large interdisciplinary community of scientists working
on it over the past few years [4].

The ability to detect such communities can be of significant practical im-
portance, providing insight into how network function and topology affect each
other. For instance, communities within the World Wide Web may correspond
to sets of web pages on related topics; communities within mobile networks may
correspond to sets of friends or colleagues; in computer networks communities
may correspond to users in a peer-to-peer traffic, or botnet farms [5]. Detecting
this special sub-structure also finds itself extremely useful in deriving social-
based applications such as forwarding and routing strategies in communication
networks [6–8], sybil defense [9, 10], worm containment on cellular network-
s [7, 11], and sensor programming [12].

Newman-Girvan’s modularity that measures the “strength” of partition of a
network into modules (also called communities or clusters) [13] has rapidly be-
come an essential element of many community detection methods. Modularity
is defined as the fraction of the edges that fall within the given communities
minus the expected such fraction if edges were distributed at random. One can
search for community structure precisely by looking for the divisions of a net-
work that have positive, and preferably large, values of the modularity. This is
the main motivation for numerous optimization methods that find communities
in the network via maximizing modularity as surveyed in [4]. Unfortunately,
Brandes et al. [14] have shown that modularity maximization is an NP-hard
problem. Thus, it is desirable to design algorithms maximizing modularity that
provide lower bounds on the modularity values.

In contrast to the vast amount of work on maximizing modularity, the on-
ly known polynomial-time approach to find a good community structure with
guarantees is due to Agarwal and Kempe [15] in which they rounded the frac-
tional solution of a linear programming (LP). The value obtained by solving the
LP gives an upper bound on the maximum achievable modularity. The main
drawback of the approach is the large LP formulation that consumes both time
and memory resources. As shown in their paper, the approach can only be used
on the networks of up to 235 nodes. In addition, no approximation ratio was
proven for the proposed algorithms.

In this paper, we study exact and approximation algorithms for maximizing
modularity. In the first part, we investigate the complexity and approxima-
bility of the problem on tree graphs. Somewhat surprisingly, the problem is
still NP-complete on trees. We then provide a polynomial time algorithm for
uniform-weighted trees, a pseudo-polynomial time algorithm and a PTAS for
trees with arbitrary weights. In the second part, we address the main draw-
back of the rounding LP approach by introducing a new formulation, called
sparse metric. We show both theoretically and experimentally that the new
formulation substantially reduces the time and memory requirements without
sacrificing on the quality of the solution. The size of solved network instances
raises from hundred to several thousand nodes while the running time on the
medium-instances are sped up from 10 to 150 times. In fact, the modularity
values found by rounding LP are optimal for many network instances.

2

Related work. A vast amount of methods to find community structure
is surveyed in [4]. Brandes et. al. proves the NP-completeness for maximizing
modularity, the first hardness result for this problem. DasGupta et. al. recently
show that maximizing modularity is APX-hard, i.e., it admits no polynomial-
time approximation schemes (PTAS) [16].

Modularity has several known drawbacks. Fortunato and Barthelemy [17]
has shown the resolution limit i.e. maximizing modularity methods fail to detect
communities smaller than a scale, the resolution limit only appears when the
network is substantially large [18]. Another drawback is modularitys highly de-
generate energy landscape [19], which may lead to very different yet equally high
modularity partitions. However, for small and medium networks of several thou-
sand nodes, the method proposed by Blondel et al. [20] to optimize modularity
is one of the best performing algorithms according to the LFR benchmark [18].
Thus our proposed method is applicable whenever high quality solutions for
small and medium networks are desired. Approximation algorithms for maxi-
mizing modularity are first studied in [21] for scale-free networks and in [16] for
d-regular networks.

Organization. We present definitions and notions in Section 2. In Sec-
tion 3, we present the first part of our results on maximizing modularity over
tree graphs including the NP-completeness, the polynomial-time algorithm for
uniform-weighted trees, the pseudo-polynomial time algorithm and a PTAS for
general weighted trees. We propose in Section 4 the second part of our results:
the sparse metric1 technique to efficiently maximize modularity via rounding
the linear programming. exact algorithm on tree is presented in Section 3. We
show experimental results for the sparse metric in Section 5 to illustrate the
time efficiency of our formulations over the previous approach.

2 Preliminaries

We consider a network represented as an undirected graph G = (V,E) consisting
of n = |V | vertices and m = |E| edges. The adjacency matrix of G is denoted by
A = (Aij), where Aij is the weight of edge (i, j) and Aij = 0 if (i, j) /∈ E. We
also denote the (weighted) degree of vertex i, the total weights of edges incident
at i, by deg(i) or, in short, di.

Community structure (CS) is a division of the vertices in V into a collection
of disjoint subsets of vertices C = {C1, C2, . . . , Cl} that the union gives back
V . Each subset Ci ⊆ V is called a community and we wish to have more edges
connecting vertices in the same communities than edges that connect vertices
in different communities. The modularity [23] of C is defined as

Q(C) =
1

2M

∑
i,j∈V

(Aij −
didj
2M

)δij (1)

1A weaker version of the sparse metric, which doubles the number of constraints, were
introduced in [22] for the β-disruptor problem.

3

where di and dj are degree of nodes i and j, respectively, M is the total edge
weights and the element δij of the membership matrix δ is defined as

δij =

{
1, if i and j are in the same community

0, otherwise.
.

The modularity values can be either positive or negative and the higher (posi-
tive) modularity values indicate stronger community structure. The maximizing
modularity problem asks to find a division which maximize the modularity value.

We also define the modularity matrix B [23] with entries Bij = Aij − didj
2M .

Then, the modularity can conveniently be written in the matrix form as

Q(C) =
1

2M
trace(Bδ)

Alternatively the modularity can be equivalently defined as

Q(C) =

l∑
t=1

(
E(Ct)

M
− vol(Ct)

2

4M2

)
, (2)

where E(Ct) is the total weight of edges whose endpoints are in Ct and for an
S ⊆ V we define vol(S) =

∑
v∈S dv, the volume of S.

3 Complexity and Approximation Algorithms on
Trees

We first show that maximizing modularity is even NP-hard on tree graphs.
Then we propose a polynomial-time dynamic programming algorithm for the
problem when the tree has uniform weights and its extension into a pseudo-
polynomial time algorithm to solve the problem on trees with arbitrary weights.
The existence of the pseudo-polynomial time algorithm implies that maximizing
modularity on trees is a weakly NP-complete problem. Finally we propose a
PTAS for the problem that finds a CS with modularity at least (1 − ε) the
maximum modularity within O(n1+1/ε).

3.1 NP-completeness

It has been proved in [14] that maximizing modularity is hard. We further prove
that the decision version of maximizing modularity is still hard on trees, one
of the simplest graph classes. Our proof is much simpler than the first proof
in [14], while implying the NP-hardness on a more restricted graph class.

Definition 1 (Modularity on Trees). Given a tree T = (V,E), weights c(e) ∈
Z+ for edges e ∈ E, and a number K, is there a community structure C of T ,
for which Q(C) ≥ K?

4

Our hardness result is based on a transformation from the following decision
problem.

Definition 2 (SUBSET-SUM). Given a set of k positive integers w1, w2, . . . , wk
and an integer S, does any non-empty subset sum to S?

𝑐0

𝑐0
′ 𝑐𝑘

𝑐𝑘−1 𝑐2

𝑐1

𝑥1

𝑥2 𝑥𝑘−1

𝑥𝑘

𝑐1
′

𝑊 − 𝑤1

𝑐𝑘
′

𝑐2
′ 𝑐𝑘−1

′

𝑤1

𝑤1

𝑤2

𝑤2
𝑤𝑘−1

𝑤𝑘−1

𝑤𝑘

𝑤𝑘 𝑊 − 𝑊0

𝑊 − 𝑤2 𝑊 − 𝑤𝑘−1

𝑊 − 𝑤𝑘

Figure 1: Gadget for NP-hardness of maximizing modularity on trees.

We show that an instance I = ({w1, w2, . . . , wk}; S) of SUBSET-SUM can
be transformed into an instance (TI(VI , EI), cI ,KI) of maximizing modularity
on the tree TI such that TI has a community structure with modularity at
least KI if and only if there exists a subset of {w1, w2, . . . , wk} that sums up
to S. Since SUBSET-SUM is an NP-hard problem [24], it follows that there is
no polynomial-time algorithm to decide the maximizing modularity problem on
trees, unless P = NP .

The reduction is as follows: Given an instance I = ({w1, w2, . . . , wk}; S) of
SUBSET-SUM, construct a tree TI = (VI , EI) consisting of 3k+ 2 vertices. For
each integer wi ∈ I, we introduce three vertices: a black vertex ci and two white
vertices c′i and xi. We also add a special pair: a black vertex c0 and a white
vertex c′0. We connect each xi to both ci and c0 with the weight wi, and connect
c′i to ci with weight W − wi for all i = 1..n, where W = (2k + 1)

∑
i wi. The

vertex c′0 is connected to c0 with weight W −W0 where W0 = S + 1/2
∑
i wi.

Before specifying parameters KI , we characterize the important properties of
any maximum modularity CS in a general graph G = (V,E).

Lemma 1. In a maximum modularity community structure of a graph G = (V, E),
the following properties hold.

1. There is no community with negative modularity [6].

2. Every non-isolated vertex is in the same community with at least one of
its neighbors.

3. Each community induces a connected subgraph in G.

5

Proof. Recall that the modularity of a single community X is defined as Q(X) =
E(X)/M − vol(X)2/4M2, where M is the sum of edge weights in the graph,
E(X) is the sum of weights of edges whose both endpoints are in X. The
modularity of C equals the total modularity values of all communities in C.

(1) The proof for the first property can be found in [6].
(2) Assume that there is a community X ∈ C, a maximum modularity CS,

that has only a single non-isolated vertex v. Since vol(X) = deg(v) > 0 and
E(X) = 0, we have Q(X) = E(X)−vol(X)2/4M2 < 0 that contradicts the first
property.

(3) Assume that a community X ∈ C induces a disconnected subgraph in
G. Thus X can be split into two disjoint subsets X1 and X2 such that no edges
cross between X1 and X2. Therefore

∆Q = Q(X1) +Q(X2)−Q(X)

= E(X1) + E(X2)− E(X) +
1

4M2
(vol(X)2 − vol(X1)2 − vol(X2)2)

=
1

4M2
((vol(X1) + vol(X2))2 − vol(X1)2 − vol(X2)2) > 0,

which contradicts the assumption that C has the maximum modularity. Hence
every non-isolated vertex must be in the same community with at least one of
its neighbors.

Lemma 2. In a maximum modularity community structure of TI , each com-
munity has exactly one black vertex.

Proof. Consider a maximum modularity CS C. The proof consists of two parts:
1) There is no community of C that have all white nodes; and 2) There is no
community in C with more than one black vertex.

For the first part, observe that none of the adjacent vertices have the same
color. By the second property of Lemma 1, if a community contains a vertex
u, it also contains a neighbor of u whose the color is different from u’s. Thus
every community must contain both black and white vertices.

We prove the second part by contradiction. Assume that a community X ∈ C
has two black vertices. We show that c0 ∈ X. Assume not, let ci and cj be
two black vertices in X. Since c0 /∈ X, ci and cj are disconnected within the
subgraph induced by X in TI , contradicting the third property in Lemma 1.
Hence, we assume w.l.o.g. that X contains c0 and c1. We prove that dividing X
into two communities X1 = {c1, c′1} and X2 = X \X1 increases the modularity,
which contradicts the optimality of C. That is to show

∆Q = −w1

M
+

1

4M2

(
vol(X)2 − vol(X1)2 − vol(X2)2

)
> 0, (3)

where M = (k+ 1)W +
∑
i wi−W0 is the total weights of edges in TI and for a

given a subset R ⊆ V , vol(R) denotes the total weighted degree of the vertices
in R.

6

Substitute vol(X) = vol(X1) + vol(X2) and simplify, we have

(3)⇔4w1M < 2vol(X1)vol(X2) (4)

Since w1 <
∑
i wi = 1

2k+1W , thus

4w1M <
2

2k + 1
W (k + 1 +

1

2k + 1
)W < 2W 2 (5)

On the right-hand side of (4):

vol(X2) > 2W −
∑
i

wi = 2W − 1

2k + 1
W

vol(X1) > deg(c′0) + deg(c0) = 2W − 2W0 +
∑
i

wi = 2W − 2S

> 2W − 2
∑
i

wi = 2W − 2

2k + 1
W

When k ≥ 1, we have

2vol(X1)vol(X2) > (2− 2

2k + 1
)(2− 1

2k + 1
)W 2 = (4− 6

2k + 1
+

2

(2k + 1)2
)W 2

> 2W 2 (6)

It follows from (5) and (6) that (4) holds i.e. ∆Q > 0. This contradicts the
maximum modularity of C. Thus each community in C must contain exactly
one black vertex.

Theorem 1. Modularity maximization on trees is NP-complete.

Proof. It is clear that maximizing modularity is in NP. To prove the NP-
hardness, we reduce an instance I = ({w1, w2, . . . , wk}; S) of SUBSET-SUM
to an instance (TI(VI , EI), cI ,KI) of maximizing modularity on the tree TI as
presented.

Consider a maximum modularity CS C. From Lemma 2 and the third prop-
erty of Lemma 1, xi is in the same community with either c0 or ci (but not
both). Let δi = 1 if xi is in the same community with c0 and δi = 0, otherwise.

In addition, let S0 =
∑
δi=1 wi and WS =

∑k
i=1 wi = 1

2k+1W .
For 1 ≤ i ≤ k, exactly one of the two edges (xi, c0) or (xi, ci) will have two

endpoints in two different communities. This leads to an important property
that the total weights of edges whose endpoints belong to different community
is exactly

∑k
i=1 wi, we have:

Q(C) =
[
1− WS

M

]
− 1

4M2
[(2W − 2W0 +WS + 2S0)2

+
∑
δi=0

(2W + wi)
2 +

∑
δi=1

(2W − wi)2]

7

To maximize Q(C), we need to minimize the second term that is

1

4M2

[
(2W − 2W0 +WS)2 + 4S2

0 + 4(2W − 2W0 +WS)S0

+
∑
δi=0

(4W 2 + 4Wwi + w2
i) +

∑
δi=1

(4W 2 − 4Wwi + w2
i)
]

=
1

4M2

[
(2W − 2W0 +WS)2 + 4S2

0 + 4(2W − 2W0 +WS)S0

+ 4kW 2 + 4WWS − 8WS0 +

k∑
i=1

w2
i

]
=

1

4M2

[
(2W − 2W0 +WS)2 + 4kW 2 + 4WWS +

k∑
i=1

w2
i)

+ 4
(
S2
0 − (2W0 −WS)S0

)]
.

For a fixed value of W0, the above sum is minimized when S2
0−(2W0−WS)S0 is

minimized at S0 = 2W0−WS

2 = S (recall that we select W0 = S +WS/2). Hence
if we choose

KI =
[
1− WS

M

]
− 1

4M2

[
(2W − 2S)2 + 4kW 2 + 4WWS +

k∑
i=1

w2
i)− 4S2

]
,

there is a CS in TI with modularity at least KI if and only if there is a subset
of wi (corresponding to δi = 1) that sum up to S.

3.2 Polynomial Time Algorithm for Uniform-weighted Trees

We present a polynomial time algorithm for finding a maximum modularity
CS on trees with uniform edge weights. By characterizing the structure of a
maximum modularity CS, we reduce maximizing modularity on trees to the
following problem.

Definition 3 (k-MSSV problem). Given a tree T = (V,E), find a set of k
edges that removal minimizes the sum-of-squares of component volumes in the
residual forest.

The relationship between maximizing modularity and k-MSSV is presented
in the following lemma.

Lemma 3. Let C be a maximum modularity CS of T = (V,E), k be the number
of communities in C, and F be the set of edges whose two endpoints belong to
two different communities. Then the following properties hold.

1. For any two different communities, there is at most one edge that crosses
between them.

2. |F | = k − 1.

8

3. F is an optimal solution for (k − 1)-MSSV problem on T = (V,E).

Proof. By the first property in Lemma 1, each community induces a connected
component. Thus we shall use the terms community and component interchange-
ably in the rest of this section.

(1) Assume that there are two different communities C1, C2 ∈ C and two
different edges (u1, v1) and (u2, v2) that satisfy u1, u2 ∈ C1 and v1, v2 ∈ C2. By
the first property in Lemma 1, there are paths between u1 and u2 within C1 and
between v1 and v2 within C2. Those two paths together with the edges (u1, v1)
and (u2, v2) form a cycle within the given tree T (contradiction).

(2) Abstract each community in C into a single node, we obtain a new graph
TA with k abstract vertices. The set of edges in the new graph are identical to
the edges in F . Since T is connected and cycle-free, TA is also connected and
cycle-free. Thus TA is a tree with k vertices. It follows that TA has k− 1 edges
and so does F .

(3) By the second property, Q(C) =
[
1− k−1

|V |

]
− 1

4|E|2
∑
Ci∈C vol(Ci)

2. Thus

Q(C) is maximized when
∑
Ci∈C vol(Ci)

2 is minimized and vice versa. Hence F
is an optimal solution for the (k − 1)-MSSV problem on T .

Thus a maximum modularity CS can be found by solving the k-MSSV prob-
lems with all k ranging from 0 to |V |. We introduce below a dynamic program-
ming algorithm for maximizing modularity via solving the k-MSSV problem.

3.2.1 Dynamic Programming Algorithm

Given the tree T = (V,E) with |V | = n, select a node r ∈ V as the root.
Denote by Tu = (V u, Eu) the subtree rooted at u in T with the set of vertices
V u and the set of edges Eu. Let u1, u2, . . . , ub(u) denote the children of u,
where t(u) = deg(u) if u = r and t(u) = deg(u) − 1 if u 6= r. In our dynamic
programming algorithm, we define the following functions:

• Fu(k): The minimum sum-of-squares of component volumes in Tu when
k edges are removed. Note that even after removing k edges the component
volumes are still measured as the sum of the vertex degrees in T , not Tu.

• Fu(k, ν): The minimum sum-of-squares of component volumes in Tu

when k edges are removed and the component that contains u, called
the cap component, has volume ν. In addition, if it is not possible to re-
move k edges to satisfy the two mentioned conditions, then Fu(k, ν) =∞

• Fui (k, ν): The minimum sum-of-squares of component volumes in Tui =
(V ui , E

u
i), the partial subtree formed by u, Tu1 , Tu2 , . . . , Tui , when k edges

are removed and the cap component has volume ν. As above, if it is not
possible to remove k edges to satisfy the two conditions, then Fui (k, ν) =
∞.

9

The maximum modularity value is given at the root r by

max
1≤k≤n−1,1≤ν≤2(n−1)

{
k

n
− F r(k, ν)

4(n− 1)2

}
(7)

We compute Fu(k, ν) and Fui (k, ν) using the following recursions.

Fu(k) = min
du≤ν≤vol(Tu)

Fu(k, ν) ∀u ∈ V, k = 0..|Eu| (8)

Fu(k, ν) = Fut(u)(k, ν) ∀u ∈ V, k = 0..|Eu|, ν = du..vol(T
u) (9)

Fui (k, ν) = min

 min
0≤l≤k−1

Fui−1(l, ν) + Fui(k − l − 1) (10.a)

min
0≤l≤k,0≤µ≤ν

Fui−1(l, µ) + Fui
i (k − l, ν − µ) + 2µ(ν − µ) (10.b)

∀u ∈ V, k = 1..|Eui |, i = 1..t(u), ν = 1..vol(Tu) (10)

The basis cases are as follows.

Fui (0, ν) =

{
vol(Tui)2 if ν = vol(Tui)

∞ otherwise
(11)

∀u ∈ V, k = 1..|Eui |, i = 1..t(u), ν = 0..vol(Tu)

Fu0 (k, ν) =

{
d2u if ν = du

∞ otherwise
(12)

∀u ∈ V, k = 0..|Eui |, ν = 0..vol(Tu)

Fui (k, ν) =∞ ∀u ∈ V, k = 0..|Eui |, i = 0..t(u), ν < du (13)

We explain the recursion from (8) to (10). In (8), we consider all possible ν,
the volume of the cap component, and assign Fu(k) the minimum values among
Fu(k, ν). The definition of Fu(k, ν) is straightforward as shown in (9). Finally,
we compute Fui (k, ν) in (10) as the minimum of the following two cases:

• If (u, ui) is removed (10.a): We can remove at most k − 1 other edges. In
addition, the cap component in Tui has the same volume ν with that of
Tui−1. For l = 0..k, we take the sum of the optimal solution when removing
l edges in Tui−1 and the optimal solution when removing k− l− 1 edges in
Tui and take the minimum as a possible value for Tui (k, ν).

• If (u, ui) is not removed (10.b): We can remove l edges within Tui−1 and
k − l removed edges within Tui for some 0 ≤ l ≤ k. In addition, if the
cap component volume of Tui−1 is µ, then the cap component of Tui has
volume ν − µ. The factor 2µ(ν − µ) = ν2− µ2− (ν − µ)2 accounts for the
increment of the total sum-of-squares volumes.

The running time of the dynamic algorithm is stated in the following lemma.

Lemma 4. The recursions from (8) to (10) can be computed in O(n5).

Proof. There are at most n different sets of Fui (·) to compute. For each set
Fui (·), there are at most n × 2n pairs of (k, ν) and the time to compute each
Fui (k, ν) is at most n × 2n (Eq. 10). Thus the running time is bounded by
O(n5).

10

We summarize the dynamic programming algorithm to maximize modularity
in the following algorithm (Algorithm 1).

Algorithm 1. Dynamic Programming Algorithm for
Uniform-weight Trees

1. for u ∈ V in postorder traversal from r do

2. for i = 0 to t(u) do

3. for k = 0 to |E(u)| do

4. for ν = 0 to vol(Tu) do

5. Compute Fui (k, ν), Fu(k, ν), and Fu(k) using (8)-(13).

6. Q = 0

7. for k = 0 to n do

8. for ν = 0 to vol(T) do

9. Q = max{Q, kn −
F r(k,ν)
4(n−1)2 }

10. return Q

Theorem 2. Algorithm 1 finds the maximum modularity in uniform weights
trees in O(n5).

3.3 Pseudo-Polynomial Time Algorithm

The above dynamic algorithm can be generalized to work for non-uniform in-
tegral weight trees. The recursion is similar to (8)-(10) with the differences in
the bounds for k and ν.

Fu(k) = min
du≤ν≤vol(Tu)

Fu(k, ν) ∀u ∈ V, k = 0..vol(Tu)/2 (14)

Fu(k, ν) = Fut(u)(k, ν) ∀u ∈ V, k = 0..Wu, ν = 0..vol(Tu) (15)

Fui (k, ν) = min


min

0≤l≤k
Fui−1(l, ν) + Fui(k − l) (16.a)

min
0≤l≤k−1,0≤µ≤ν

Fui−1(l, µ)

+Fui
i (k − l − w(u, ui), ν − µ) + 2µ(ν − µ) (16.b)

(16)

∀u ∈ V, k = 0..vol(Tu), i = 1..t(u), ν = 0..vol(Tui). (17)

The time complexity of the algorithm is a function of vol(T), which can be
exponentially large in terms of the input size. Thus the dynamic programming
is a pseudo-polynomial time algorithm with the time complexity stated in the
following theorem.

11

Theorem 3. The recursion (14)-(17) gives an O(n5W 4) pseudo-polynomial
time algorithm for maximizing modularity on integral weight tree, where W is
the maximum edge weight.

Corollary 1. Modularity maximization on weighted trees is weakly NP-complete.

3.4 Polynomial Time Approximation Scheme (PTAS)

Given an ε > 0, we present an O(n1/ε+1) algorithm to find CS in T with
modularity at least (1 − ε)Qopt, where Qopt denotes the maximum modularity
over all possible CS.

On one hand, the second properties in Lemma 3 states that a CS with k
communities has exactly k− 1 edges whose endpoints in different communities.
Thus there is a one-on-one correspondence between a set of k − 1 edges in T
and CS with exactly k communities: removing k − 1 edges yields k connected
components/communities. On the other hand, the following lemma implies
that CS with at most k communities approximate closely to the maximum
modularity.

Lemma 5. [16, 21] Given a weighted graph G = (V,E). Denote by Qk the
maximum modularity of a CS in G with at most k communities and by Qopt =
Qn. We have

Qk ≥ (1− 1

k
)Qopt

Thus we have the following PTAS for maximizing modularity on trees.

Algorithm 2. PTAS for Maximizing modularity on Trees

1. Given ε > 0, set k = d1/εe.

2. Qk = 0, Ck = {V }

3. for each X ⊂ E and |X| < k do

4. Find connected component C1, C2, . . . , Ck in T ′ = (V,E \X).

5. Let CS J = {C1, C2, . . . , Ck}

6. if Q(J) > Qk then

7. Qk = Q(J)

8. Ck = J

9. Return Ck

Theorem 4. Algorithm 2 finds in O(n1+1/ε) time a CS with modularity value
at least (1− ε)Qopt on weighted trees.

12

Proof. By Lemma 5, the modularity of the found CS will be at least (1−ε)Qopt.
In addition, for each of the nk−1 subsets, computing the modularity takes O(n).
Thus the total time complexity is O(nk−1+1) = O(n1/ε+1).

While the existence of an FPTAS implies the existence of a pseudo-polynomial
time algorithm, the reverse is not necessary true. It is an open question that
whether an FPTAS for maximizing modularity on trees exists.

4 Linear Programming Based Algorithm

In this section, we first present the original linear program (LP) in [15]. Then
we present, in subsection 4.2, our sparse metric formulations that contain only
a small fraction of constraints in the original LP. We postpone all the proofs on
correctness and performance of our new formulations till the end of the section.

4.1 The Linear Program and The Rounding
The modularity maximization problem can be formulated as an Integer Linear
Programming (ILP) [14] 2.(18) to (21), has one variable xij for each pair (i, j)
of vertices to represent the “distance” between i and j i.e. xij = 0 if i and j are
in the same community and xij = 1, otherwise.

In other words, xij is equivalent to 1−δij in the definition (1) of modularity.

Thus, the objective function to be maximized can be written as
∑
ij

Bij(1−xij).

The ILP to maximize modularity (IPcomplete) is as follows

maximize
1

2M

∑
ij

Bij(1− xij) (18)

subject to xij + xjk − xik ≥ 0, ∀i < j < k (19)

xij − xjk + xik ≥ 0, ∀i < j < k (20)

− xij + xjk + xik ≥ 0, ∀i < j < k (21)

xij ∈ [0, 1], i, j ∈ [1..n], (22)

Constraints (19), (20), and (21) are well-known triangle inequalities that
guarantee the values of xij are consistent to each other. They imply the following
transitivity: if i and j are in the same community and j and k are in the same
community, then so are i and k. By definition, xii = 0 ∀i and can be removed
from the ILP for simplification.

We shall refer to the IP described above as IPcomplete and its relaxation, ob-
tained by replacing the constraints xij ∈ {0, 1} by xij ∈ [0, 1], as LPcomplete. If
the optimal solution of this relaxation is an integral solution, which is very often
the case [25], we have a partition with the maximum modularity. Otherwise, we
resort on rounding the fractional solution and use the value of the objective as

2In deed, the constraints in [14] are of the form xij + xjk − 2xik ≤ 1 rather than the form
in Eq. 19. As a result, the LP relaxation in [14] is less tight than those in [15] and Eq. 19-21.

13

an upper-bound that enables us to lower-bound the gap between the rounded
solution and the optimal integral solution.

Agarwal and Kempe [15] used a simple rounding algorithm, proposed by
Charikar et al. [26] for the correlation clustering problem [27], to obtain the
community structure from a fractional optimal solution. The values of xij are
interpreted as a metric “distance” between vertices. The algorithm repeatedly
groups all vertices that are close by to a vertex into a community. The fi-
nal community structure are then refined by a Kernighan-Lin [28] local search
method.

The modularity maximization formulation can be also expressed as a clique
partitioning problem [29]. In [29] the author proposed a row generation tech-
nique to incrementally add the triangle inequalities constraints and solve the
LP. In each iteration, the batch of about 150 constraints are added and the
non-tight constraints are identified and removed from the LP. The advantage
of our sparse LP over the row generation method is that, the sparse metric
technique exclude major ‘redundant’ constraints even before solving the pro-
gramming formulation. Since the set of non-tight constraints are known as a
priori, the LP is solved only once and we do not have to examine the O(n3)
constraints in each iteration. Nevertheless, the two techniques are orthogonal
and can be applied in parallel to improve the running time. Regarding efforts
on solving the IP exactly, cutting planes and polyhedral characteristics for the
clique partitioning and other clustering problems can be found in [25,30,31] and
the references therein.

Since the rounding phase is comparatively simple, the burden of both time
and memory comes from solving the large LP relaxation. Note that the LP
has

(
n
2

)
variables and 3

(
n
3

)
= Θ(n3) constraints that is about half a million

constraints for a network of 100 vertices. As a consequence, the sizes of solved
instances in [15] were limited to few hundred nodes. Hence, there is a need
for more efficient formulations for the maximizing modularity problem. By
combining mathematical approaches with combinatorial techniques, we achieve
this goal in next subsection.

4.2 Sparse Metric

Instead of using 3
(
n
3

)
triangle inequalities, we show that only a small subset of

those, called sparse metric, are sufficient to obtain the same optimal solutions.
Our integer linear program with the Sparse Metric technique, denoted by

IPsparse, is as follows:

maximize − 1

2M

∑
ij

Bijxij (23)

subject to xik + xkj ≥ xij k ∈ K(i, j) ⊆ V \ {i, j} (24)

xij ∈ {0, 1}, (25)

First, since
∑
ij

Bij =
∑
ij

Aij −
didj
2M

= 2M −
∑
i di
∑
j dj

2M
= 0, we simplify

14

the objective to − 1
2M

∑
ij

Bijxij . Second, different selections of K(i, j) give us

different formulations. For example, the IPcomplete can be obtained by choos-
ing K(i, j) = V \ {i, j}. However, not all selection of K(i, j) result in valid
formulations for the maximizing modularity problem.

Notice that if we define a function d(i, j) = xij , then the function should
satisfy all the following conditions of a pseudo-metric:

1. d(i, j) ≥ 0 (non-negativity)

2. d(i, i) = 0 (and possibly d(i, j) = 0 for some distinct values i 6= j)

3. d(i, j) = d(j, i) (symmetry)

4. d(i, j) ≤ d(i, k) + d(k, j) (transitivity).

Therefore, K(i, j) must be selected so that if x ∈ [0, 1](
n
2) is a feasible solution

then x must induce a pseudo-metric.
We will prove in the next section (Theorems 5 and 6) that if K(i, j) is a

vertex cut 3 for two vertices i and j, then IPsparse is a valid formulation for the
maximizing modularity problem. Moreover, the corresponding LP relaxation,
called LPsparse, will have the same strength with the LPcomplete i.e. they have
the same optimal objective values.

Hence, we select K(i, j) as the minimum set of vertices whose deletion dis-
connects i from j. The cardinality of K(i, j) is known as the vertex connectivity
of i and j and is denoted by κ(i, j). Alternatively, we can select K(i, j) to be
neighbors of i or j which are much easier to find. Either ways will give the
following bounds on the number of constraints.

Lemma 6. If d1 ≤ d2 ≤ . . . ≤ dn is the sorted (unweighted) degree sequence
of the graph, then the number of constraints is upper bounded by the following
quantities

1)

n∑
i=1

(i− 1)di 2) m(n− 1)

where m = |E| is the number of edges.

Proof. Since |K(i, j)| ≤ min{di, dj}, hence the number of constraints is at most∑
i<j min{di, dj} =

∑
i<j di =

∑n
i=1(i−1)di. Also, since min{di, dj} ≤ 1/2(di+

dj), thus the number of constraints is upper-bounded by

∑
i<j

1

2
(di + dj) =

1

2

n∑
i=1

(n− 1)di = m(n− 1)

This completes the proof.

3a set of vertices whose removal from the graph disconnects i and j. If (i, j) ∈ E, K(i, j)
is a vertex cut of i and j after removing edge (i, j).

15

Corollary 2. In sparse networks, where m = O(n), LPsparse contains only
O(n2) constraints.

Thus, for sparse networks, our new formulations substantially reduces time
and memory requirements. For most real-world network instances, where n ≈
m, the number of constraints is effectively reduced from Θ(n3) to O(n2). If
we consider the time to solve a linear program to be cubic time the number of
constraints, the total time complexity for sparse networks improves to O(n6)
instead of O(n9) as in the original approach.

4.3 Validity and Strength of the Sparse Formulations

We show the equivalence between the sparse formulation and the complete for-
mulation when K(i, j) is selected as a vertex cut of i and j. We prove in
Theorems 5 and 6 the following statements, respectively.

• IPsparse and IPcomplete have the same set of optimal integral solutions.

• The optimal fractional solutions of LPsparse and LPcomplete have the same
objective values i.e. they provide the same upper bound on the maximum
possible modularity.

Hence, solving LPsparse indeed gives us an optimal solution of LPcomplete within
only a small fraction of time and memory requirements of LPcomplete.

Theorem 5. Two integer programmings IPsparse and IPcomplete have the same
set of optimal solutions.

Proof. We need to show that every optimal solution of IPcomplete is also a solu-
tion of IPsparse and vice versa. In one direction, since the constraints in IPsparse
are a subset of constraints in IPcomplete, every optimal solution of IPcomplete will
also be a solution of IPsparse.

In the other direction, let xij be an optimal integral solution of IPsparse.
We shall prove that xij must be a pseudo-metric that implies xij is also a
feasible solution of IPcomplete. For convenience, we assume that the original
graph G = (V,E) has no isolate vertices that are known to have no affects on
modularity maximization [23]. Construct a graph Gd = (V,Ed) in which there
is an edge (i, j) ∈ Ed for every xij = 0. Let Cd = {C1

d , C
2
d , . . . , C

l
d} be the set

of connected components in Gd, where Ctd is the set of vertices in tth connected
component.

We first prove an important property in the optimal community structure.
That is each community must induce a connected subgraph in the network.

Claim: Every connected component Ctd induces a connected subgraph in the
graph G = (V,E).

Proof. We prove by contradiction. Assume that the connected component Ctd
does not induce a connected subgraph in G. Hence, we can partition Ctd into
two subsets S and T so that there are no edges between S and T in G.

16

w v

u

Figure 2: Clique expanding process.

Construct a new solution x′ from x by setting x′ij = 1 for every pair (i, j) ∈
S × T and x′ij = xij otherwise. For every pair (i, j) ∈ S × T , since Aij = 0 ,

we have Bij = Aij − didj
2M < 0. Hence, setting x′ij = 1 ∀(i, j) ∈ S × T can

only increase the objective value. In fact, since there must be at least one pair
(i, j) ∈ S × T with xij = 0 (or else Ctd is not a connected component in Gd),
doing so will strictly increase the objective. Moreover, we can verify that x′ also
satisfy all constraints of IPsparse. Thus, we have a feasible solution with higher
objective than the optimal solution x (contradiction).

To prove that xij is a pseudo-metric, we prove an equivalent statement that
if vertices i and j belong to the same component Ctd then the distance xij = 0.
We prove by repeatedly growing a clique inside Ctd. At each step, every pair
of vertices in the clique are proven to have distance 0. Then, we add one more
vertex to the clique and prove that the new vertex is also of distance zero from
other vertices in the clique (see Fig. 2).

Formally, we prove by induction that for all p ≤ |Ctd|, there exists in Ctd a
clique Ψ of size p satisfying simultaneously the following conditions

1. xij = 0 ∀(i, j) ∈ Ψ,

2. The subgraph induced by Ψ in G is connected.

The basis. For p = 1, select an arbitrary vertex in Ctd. The two above
conditions hold trivially.

The inductive step. Assume that we have a clique Ψ ⊂ Ctd satisfying the two
conditions. If Ψ = Ctd then we have completed the proof. Otherwise, there exist
vertex u ∈ Ψ and vertex v ∈ Ctd \ Ψ, so that (u, v) ∈ E(G) and xuv = 0. The
existence of such an edge (u, v) can be proven by contradiction. Assume not,
then we can increase distance of all pairs in Ψ× (Ctd \Ψ) from 0 to 1 to increase
the objective value while not violating any constraints. This would imply Ψ
is disconnected from the rest of Ctd, which is contradicted to the fact that Ctd
induces a connected subgraph. Now, consider an arbitrary neighbor w of u in
the subgraph induced by Ψ. Since u is a common neighbor of w and v, we have
u ∈ K(w, v) i.e. the constraint xwu + xuv ≥ xwv must be in IPsparse. Thus, we
have xwv = 0 since both xwu = 0 (w, u ∈ Ψ) and xuv = 0.

17

We have proven that for every neighbor w of u, xwv = 0. Similarly, for all
neighbor w′ of w, xvw′ = 0, and so on. Since the clique induces a connected
subgraph in G, eventually ∀u′ ∈ Ψ, we have xvu′ = 0. That is we can extend
the clique Ψ to include v and obtain a clique of size p+ 1 that satisfies the two
conditions. This completes the proof of Theorem 5.

Theorem 6. LPsparse and LPcomplete share the set of optimal solutions which
are extreme points.

Proof. We need to show that every fractional optimal solution of LPcomplete is
also a fractional solution of LPsparse and vice versa. Since the integrality con-
straints have been dropped in both LP relaxations, we need a different approach
to the proof in Theorem 5.

First, every fractional optimal solution of LPcomplete is also a fractional so-
lution of LPsparse. For the other direction, let x be a fractional optimal solution
of LPsparse, we shall prove that x is also a feasible solution of LPcomplete.

Associate a weight wij = xij for each edge (i, j) ∈ E(G) (other edges are
assigned weights∞). Let x′ij be the shortest distance between two vertices i and
j within G = (V,E) given the new edge weights. We shall prove the following
statements

1. x′ij = minnk=1{x′ik + x′kj}.

2. x′ij ≥ xij for all i, j and x′ij = xij ∀(i, j) ∈ E.

The first statement is obvious by the definition of x′ij . We prove the second
statement by contradiction. Assume that there exist i and j such that x′ij < xij .
Let u0 = i, u1, . . . , ul = j be the vertices on the shortest path between i and j.
We also assume that among pairs of vertices (i, j) satisfying x′ij < xij , we select
the pair with minimum value of l, the number of edges on the shortest path.

Since K(i, j) is a vertex cut of i and j, there must be 0 < k < l such that
uk ∈ K(i, j) i.e. the constraint xiuk

+xukj ≥ xij > x′ij appears in the LPsparse.
From the suboptimality of the shortest path, we have x′iuk

= xu0u1
+. . .+xuk−1uk

and x′ukj
= xukuk+1

+ . . .+ xul−1ul
and x′ij = x′iuk

+ x′ukj
. Therefore

xiuk
+ xukj ≥ xij > x′ij = x′iuk

+ x′ukj

That is either xiuk
> x′iuk

or xukj > x′ukj
. However, the length of the shortest

paths between i and uk and between uk and j are strictly less than l. We obtain
the contradiction to the minimal selection of l and complete the proof of the
second statement.

The two statements imply that x′ij is a pseudo-metric. However, x′ij may be
no longer upper bounded by one. Thus, we define x∗ij = min{x′ij , 1} that satisfy
the following properties.

• x∗ij ≥ xij ∀i, j (by definition),

• x∗ij = x′ij = xij ∀(i, j) ∈ E, and

18

• x∗ik + x∗kj ≥ min{x′ik + x′kj , 1} ≥ min{x′ij , 1} = x∗ij .

That is x∗ is also a pseudo-metric.
Now, if xij = x∗ij for all i, j, then x satisfies all triangle inequalities in

LPcomplete and we yield the proof. Otherwise, assume that xij < x∗ij for some
pair (i, j). We show that x∗ is a feasible solution of LPsparse with a greater
objective value that contradicts the hypothesis that x is an optimal solution.
Indeed, for all edges (i, j) /∈ E(G), xij = x∗ij , and for (i, j) /∈ E we have (Bij <

0)∧ (x∗ij ≥ xij). Hence, the objective − 1
2M

∑
ij Bijx

∗
ij > − 1

2M

∑
ij Bijxij (con-

tradiction).

Table 1: Order and size of network instances

Problem ID Name Vertices (n) Edges (m)

1 Zachary’s karate club 34 78
2 Dolphin’s social network 62 159
3 Les Miserables 77 254
4 Books about US politics 105 441
5 American College Football 115 613
6 US Airport 97 332 2126
7 Electronic Circuit (s838) 512 819
8 Scientific Collaboration 1589 2742

5 Computational experiments

We compare the running time and the number of constraints of our sparse
metric formulations and the original LP in [15]. In addition, we include in
the comparison the modularity values of the most popular algorithms in the
literature [13,15,23]. Also, we include the state of the art, the Blondel method,
[20]. Since Blondel is a randomized algorithm, we repeat the algorithm 10 times
and report the best modularity value found. The optimal modularity values are
reported in [25] except for the largest test case in which we use the GUROBI
built-in branch-and-cut algorithm to find the optimal integral solution.

We perform the experiments on the standard datasets for community struc-
ture identification [15, 25], consisting of real-world networks. The datasets’
names together with their sizes are listed in Table 1. The largest network
consists of 1580 vertices and 2742 edges. All references on the datasets can
be found in [15] and [25]. The LP solver is GUROBI 4.5, running on a PC
computer with Intel 2.93 Ghz processor and 12 GB of RAM.

Since the same rounding procedures are applied on the optimal fractional
solutions, both LPcomplete and LPsparse yield the same modularity values. How-
ever, LPsparse can run on much larger network instances. The modularity of
the rounding LP algorithms and other published methods are shown in Table 2.

19

Table 2: The modularity obtained by previous published methods GN [13],
EIG [23], Blondel [20], VP [15], LPcp (complete LP) [15], our sparse metric
approach LPsp and the optimal modularity values OPT [25].

ID n GN EIG Blondel VP LPcl LPsp OPT

1 34 0.401 0.419 0.420 0.420 0.420 0.420 0.420
2 62 0.520 - 0.524 0.526 0.529 0.529 0.529
3 77 0.540 - 0.560 0.560 0.560 0.560 0.560
4 105 - 0.526 0.527 0.527 0.527 0.527 0.527
5 115 0.601 - 0.605 0.605 0.605 0.605 0.605
6 332 - - - - - 0.368 0.368
7 512 - - 0.796 - - 0.819 0.819
8 1589 - - 0.955 - - 0.955 0.955

The rounding LP algorithm can find optimal solutions (or within 0.1% of the
optimal solutions) in all cases. While getting optimal modularity values with ex-
act algorithms is cost-prohibitive, rounding fractional solutions of our LPsparse
takes less than 2 minutes for moderate size networks.

Note that only our rounding LP method can work on the test case 6, where
the tested network is directed. The reason is that popular modularity optimiza-
tion methods such as GN, EIG, and Blondel cannot work with directed networks;
and the previous LP formulation [15] is too large to fit into the memory.

Table 3: Number of constraints and running time in seconds of the formulations
LPcomplete and LPsparse. 〈C〉 stands for complete and 〈S〉 stands for sparse.

ID n Constraint〈C〉 Constraint〈S〉 Time〈C〉 Time〈S〉
1 34 17,952 1,441 0.21 0.02
2 62 113,460 5,743 3.85 0.11
3 77 219,450 6,415 13.43 0.08
4 105 562,380 30,236 60.40 1.76
5 115 740,715 66,452 106.27 13.98
6 332 18,297,018 226,523 - 197.03
7 512 66,716,160 294,020 - 53.18
8 1589 2,002,263,942 159,423 - 2.94

Finally, we compare the number of constraints of the LP formulation used
in [15] and our new formulation (LPsparse) in Table 3. Our new formulation
contains substantially less constraints, thus can be solved more effectively. The
old LP formulation cannot be solved within the time allowance (10000 seconds)
and the memory availability (12 GB) in cases of the network instances 6 to
8. The largest instance of 1589 nodes is solved surprisingly fast, taking under
3 seconds. The reason is due to the presence of leaves (nodes of degree one)

20

and other special motifs that can be efficiently preprocessed with the reduction
techniques in [32].

Our new technique substantially reduces the time and memory requirements
both theoretically and experimentally without any trade-off on the quality of
the solution. The size of solved network instances raises from hundred to several
thousand nodes while the running time on the medium-instances are sped up
from 10 to 150 times. Thus, the sparse metric technique is a suitable choice when
the network has a moderate size and a community structure with performance
guarantees is desired.

References

[1] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-
world’ networks. Nature, 393, 1998.

[2] A. Barabasi, R. Albert, and H. Jeong. Scale-free characteristics of random
networks: the topology of the world-wide web. Physica A, 281, 2000.

[3] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.
Network motifs: simple building blocks of complex networks. Science (New
York, N.Y.), 298(5594), 2002.

[4] S. Fortunato and C. Castellano. Community structure in graphs. Encyclo-
pedia of Complexity and Systems Science, 2008.

[5] Y. Zhao, Y. Xie, F. Yu, Q. Ke, Y. Yu, Y. Chen, and E. Gillum. Bot-
graph: large scale spamming botnet detection. In NSDI ’09, pages 321–334.
USENIX Association, 2009.

[6] T.N. Dinh, Ying Xuan, and M.T. Thai. Towards social-aware routing in
dynamic communication networks. In Proc. of IEEE IPCCC, pages 161–
168, 2009.

[7] N.P. Nguyen, T.N. Dinh, Y. Xuan, and M.T. Thai. Adaptive algorithms for
detecting community structure in dynamic social networks. In INFOCOM,
2011 Proceedings IEEE, pages 2282 –2290, april 2011.

[8] P. Hui, J. Crowcroft, and E. Yoneki. Bubble rap: Social-based forward-
ing in delay-tolerant networks. Mobile Computing, IEEE Transactions on,
10(11):1576 –1589, nov. 2011.

[9] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. Sybilguard: defend-
ing against sybil attacks via social networks. In Proceedings of the ACM
SIGCOMM 2006 conference, SIGCOMM ’06, pages 267–278, New York,
NY, USA, 2006. ACM.

[10] B. Viswanath, A. Post, K. P. Gummadi, and A. Mislove. An analysis of
social network-based sybil defenses. In Proceedings of the ACM SIGCOMM

21

2010 conference, SIGCOMM ’10, pages 363–374, New York, NY, USA,
2010. ACM.

[11] Z. Zhu, G. Cao, S. Zhu, S. Ranjan, and A. Nucci. A social network based
patching scheme for worm containment in cellular networks. In INFOCOM
2009, IEEE, pages 1476 –1484, april 2009.

[12] B. Pásztor, L. Mottola, C. Mascolo, G.P. Picco, S. Ellwood, and D. Mac-
donald. Selective reprogramming of mobile sensor networks through social
community detection. In Proc. of EWSN, volume 5970, pages 178–193.
Springer Berlin Heidelberg, 2010.

[13] M. Girvan and M. E. Newman. Community structure in social and biolog-
ical networks. PNAS, 99(12), 2002.

[14] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and
D. Wagner. On modularity clustering. Knowledge and Data Engineering,
IEEE Transactions on, 20(2), 2008.

[15] G. Agarwal and D. Kempe. Modularity-maximizing graph communities via
mathematical programming. Eur. Phys. J. B, 66, 2008.

[16] Bhaskar DasGupta and Devendra Desai. On the complexity of newman’s
community finding approach for biological and social networks. Journal of
Computer and System Sciences, (0), 2012.

[17] S. Fortunato and M. Barthelemy. Resolution limit in community detection.
Proceedings of the National Academy of Sciences, 104(1), 2007.

[18] Andrea Lancichinetti and Santo Fortunato. Community detection algo-
rithms: A comparative analysis. Phys. Rev. E, 80:056117, Nov 2009.

[19] Benjamin H. Good, Yves-Alexandre de Montjoye, and Aaron Clauset. Per-
formance of modularity maximization in practical contexts. Phys. Rev. E,
81:046106, Apr 2010.

[20] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communities in large networks. Journal of
Statistical Mechanics: Theory and Experiment, 2008(10), 2008.

[21] T. N. Dinh and M. T. Thai. Finding community structure with performance
guarantees in scale-free networks. In SocialCom/PASSAT, pages 888–891,
2011.

[22] T.N. Dinh and M.T. Thai. Precise structural vulnerability assessment vi-
a mathematical programming. In IEEE Military Conference - MILCOM
2011, pages 1351 –1356, 2011.

[23] M. E. J. Newman. Modularity and community structure in networks. Pro-
ceedings of the National Academy of Sciences, 103, 2006.

22

[24] Michael R. Garey and David S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New
York, NY, USA, 1990.

[25] D. Aloise, S. Cafieri, G. Caporossi, P. Hansen, S. Perron, and L. Liberti.
Column generation algorithms for exact modularity maximization in net-
works. Physical Review E - Statistical, Nonlinear and Soft Matter Physics,
82, 2010.

[26] M. Charikar and A. Wirth. Maximizing quadratic programs: Extending
grothendieck’s inequality. FOCS, 2004.

[27] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Foundations
of Computer Science, Annual IEEE Symposium on (FOCS), 0:238, 2002.

[28] B. W. Kemighan and S. Lin. An efficient heuristic procedure for partition-
ing graphs. Journal of Classification, 1970.

[29] M. Grötschel and Y. Wakabayashi. A cutting plane algorithm for a clus-
tering problem. Math. Program., 45(1):59–96, August 1989.

[30] M. Grötschel and Y. Wakabayashi. Facets of the clique partitioning poly-
tope. Mathematical Programming, 47(1):367–387, 1990.

[31] P. Hansen and B. Jaumard. Cluster analysis and mathematical program-
ming. Mathematical Programming, 79:191–215, 1997. 10.1007/BF02614317.

[32] Duch J Fernandez A Gomez S Arenas, A. Size reduction of complex net-
works preserving modularity. New J. Phys., 9, 2007.

23

