Section 9 Solutions

2. The orbits of $\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 2 & 4 & 8 & 3 & 1 & 7\end{array}\right)$ are $\{1,5,8,7\},\{2,6,3\}$ and $\{4\}$.
3. The orbits of the permutation $\sigma: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $\sigma(n)=n-3$ are computed as follows.

$$
\begin{array}{lrllllllrllllllllll}
\cdots & 12 & \rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow & & \rightarrow & -3 & \rightarrow & -6 & \rightarrow & -9 & \rightarrow & -12 & \rightarrow & \cdots \\
\cdots & 10 & \rightarrow & \rightarrow & \rightarrow & \rightarrow & 2 & \rightarrow & -1 & \rightarrow & -4 & \rightarrow & -7 & \rightarrow & -10 & \rightarrow & -13 & \rightarrow & \cdots \\
\cdots & 9 & \rightarrow & \rightarrow & 4 & \rightarrow & \rightarrow & -2 & \rightarrow & -5 & \rightarrow & -8 & \rightarrow & -11 & \rightarrow & -14 & \rightarrow & \cdots
\end{array}
$$

Thus, there are three orbits $\{3 n \mid n \in \mathbb{Z}\},\{3 n-1 \mid n \in \mathbb{Z}\}$ and $\{3 n-2 \mid n \in \mathbb{Z}\}$.
8. $(1,3,2,7)(4,8,6)=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 8 & 5 & 4 & 1 & 6\end{array}\right)$
10. $(1,3,2,7)(4,8,6)=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1\end{array}\right)=(1,8)(3,6,4)(5,7)=(1,8)(3,6)(6,4)(5,7)$
18. What is the maximum possible order of an element in S_{15} ?

Consider an element $\tau \in S_{15}$ that is a product of disjoint cycles of length 7,5 , and 3 , respectively. For example, one possibility is $\tau=(1,2,3,4,5,6,7)(8,9,10,11,12)(13,14,15)$.
Then τ has order $7 \cdot 5 \cdot 3=\mathbf{1 0 5}$. A moment of reflection will convince you you can't do any better than this.
29. If H is a subgroup of S_{n}, then either all the elements of H are even, or exactly half are even and the other half are odd.

Proof. Suppose H is a subgroup of S_{n}. Notice that H contains the identity permutation, which is even, so H does not consist entirely of odd permutations. If it happens that all the elements of H are even, then there is nothing to prove.

Thus, suppose some elements of H are even and others are odd. Let E be the set of even permutations in H and let O be the set of odd permutations in H. We want to show that E and O have the same cardinality, which means we want to exhibit a one-to-one and onto function $\varphi: E \rightarrow O$.
Choose an odd permutation $\sigma \in O$, and define φ by the rule $\varphi(x)=\sigma x$. Notice that this function makes sense. If $x \in E$, then x is even, and since σ is odd, $\varphi(x)=\sigma x$ is odd (odd•even $=$ odd). Moreover, since x and σ are in H, then $\varphi(x)=\sigma x$ is in H as well, because H is closed. Consequently, φ sends even permutations in H to odd permutations in H, that is it is a function from E to O, as advertised.

To see that φ is one-to-one, suppose $\varphi(\tau)=\varphi(\mu)$. This means $\sigma \tau=\sigma \mu$, so $\tau=\mu$ by cancellation on S_{n}. Thus φ is one-to-one.
To see that φ is onto, let μ be an arbitrary permutation in O. Then $\sigma^{-1} \mu$ is an even permutation (odd•odd $=$ even), and it's in H because both σ (hence σ^{-1}) and μ are in H. Consequently $\sigma^{-1} \mu \in E$. Observe that $\varphi\left(\sigma^{-1} \mu\right)=\sigma \sigma^{-1} \mu=\mu$, and it follows that φ is onto.
This completes the demonstration that there is a one-to-one and onto function $\varphi: E \rightarrow O$, so $|E|=|O|$. Thus half the permutations of H are even and the other half are odd.

