Section 6 Solutions

(18) Consider the cyclic subgroup of \mathbb{Z}_{42} generated by 30.

This contains the elements $0 \cdot 30$, $1 \cdot 30$, $2 \cdot 30$, $4 \cdot 30$, ..., and so on.

Working this out, we get the list $0, 30, 18, 6, 36, 24, 12, 0, 30, 18, 6, 36, 24, 12, 0, \dots$

This is the subgroup $\langle 6 \rangle = \{0, 6, 12, 18, 24, 30, 36\}$ and its order is 7.

- (20) Note $\frac{1+i}{\sqrt{2}} = \cos \frac{2\pi}{8} + i \sin \frac{2\pi}{8}$ is the generator ζ of the subgroup $U_8 \leq \mathbb{C}^*$. The order of U_8 is 8.
- (24) Here are the lattice diagrams.

(46) Suppose a and b are elements of a group G. If ab has order n, then ba has order n also.

Proof. Recall the definition of the order of an element of a group.

The order of ab is the cardinality of the cyclic subgroup $\langle ab \rangle = \{(ab)^k | k \in \mathbb{Z}\}.$

The order of ba is the cardinality of the cyclic subgroup $\langle ba \rangle = \{(ba)^k | k \in \mathbb{Z}\}.$

(Notice these could be different subgroups, since it's possible $ab \neq ba$.)

To show the orders are the same, we will show that the cardinalities of $\langle ab \rangle$ and $\langle ba \rangle$ are the same.

This will be done by constructing a one-to-one and onto function $\varphi : \langle ab \rangle \to \langle ba \rangle$.

Define $\varphi:\langle ab\rangle \to \langle ba\rangle$ by the rule $\varphi(x)=a^{-1}xa$.

Notice $\varphi((ab)^k) = a^{-1}(ab)^k a = a^{-1}(ab)(ab) \cdots (ab)a = (ba)(ba) \cdots (ba) = (ba)^k$ so φ does send elements of $\langle ab \rangle$ to elements of $\langle ba \rangle$.

To see that φ is one-to-one, suppose $\varphi(x) = \varphi(y)$. This means $a^{-1}xa = a^{-1}ya$. Left-multiplying both sides by a produces the equation xa = ya. Now right-multiplying both sides by a^{-1} gives x = y, so φ is one-to-one.

To see that φ is onto, consider an arbitrary element $y=(ba)^k$ of $\langle ba \rangle$. Then $(ab)^k \in \langle ab \rangle$, and $\varphi((ab)^k)=a^{-1}(ab)^ka=a^{-1}(ab)(ab)\cdots(ab)a=(ba)(ba)\cdots(ba)=(ba)^k=y$. Thus φ is onto.

Since we have a one-to-one an onto function from $\langle ab \rangle$ to $\langle ba \rangle$, it follows that ab and ba have the same order.

(49) It's not true that if every proper subgroup of a group is cyclic then the group is cyclic. For a counterexample, consider the Klein 4-group V. It is not cyclic, but its proper subgroups are $\{e,a\} = \langle a \rangle$, $\{e,b\} = \langle b \rangle$, $\{e,c\} = \langle c \rangle$ and $\{e\} = \langle e \rangle$, which are all cyclic.