Section 5 Solutions

8. Let H be the set of $n \times n$ matrices whose determinant is 2 .

Note that H is NOT a subgroup of $\mathrm{GL}(n, \mathbb{R})$ because it is not closed under matrix multiplication: Suppose $A \in H$. This means $\operatorname{det}(A)=2$, so $\operatorname{det}(A A)=\operatorname{det}(A) \operatorname{det}(A)=2 \cdot 2=4 \neq 2$, so the product $A A$ does not have determinant 2 , so it is not in H. Also H can't be a subgroup because the identity I satisfies $\operatorname{det}(I)=1 \neq 2$, forcing $I \notin G$. Finally, if $A \in H$ then $\operatorname{det}(A)=2$ and from linear algebra $\operatorname{det}\left(A^{-1}\right)=\frac{1}{2} \neq 2$. In other words $A \in H$ implies $A^{-1} \notin H$.
12. Let H be the set of $n \times n$ matrices whose determinant is 1 or -1 .

Then H is a subgroup of $\mathrm{GL}(n, \mathbb{R})$ for the following reasons.
(a) First we show H is closed. Suppose $A, B \in H$, which means $\operatorname{det}(A) \in\{1,-1\}$ and $\operatorname{det}(B) \in$ $\{1,-1\}$. Then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ can only be 1 or -1 . But this means $A B$ satisfies the requirement for being in H, so $A B \in H$, hence H is closed.
(b) The identity I is in H because $\operatorname{det}(I)=1$, meaning I meets the requirement for being in H.
(c) Suppose $A \in H$. This means $\operatorname{det}(A)$ is either 1 or -1 . Hence $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$ is either 1 or -1 , so $A^{-1} \in H$.

Properties 1-3 above show that H is a subgroup of $\operatorname{GL}(n, \mathbb{R})$.
22. Denote the given matrix as A and observe that $A^{2}=I$, so A is its own inverse. From this, note that $A^{k}=A$ if k is odd and $A^{k}=I$ if k is even. The cyclic subgroup geberated by A is thus $\langle A\rangle=\left\{A^{k} \mid k \in \mathbb{Z}\right\}=\{I, A\}$, and its order is 2 . Note that $\langle A\rangle=\{I, A\} \cong \mathbb{Z}_{2}$.
31. Since $\cos (3 \pi / 2)+i \sin (3 \pi / 2)=-i$, the subgroup in question consists of all the integer powers of $-i$. Now, $(-i)^{1}=-i,(-i)^{2}=-1,(-i)^{3}=i,(-i)^{4}=1$. Then $(-i)^{5}=-i$ completes the cycle and the pattern continues after this. Thus the subgroup is $\{1, i,-1,-i\}$ and its order is 4 .
47. Suppose G is an abelian group. Then $H=\left\{x \in G \mid x^{2}=e\right\}$ is a subgroup of G.

Proof. We make the following observations:
(a) First we show H is closed. Suppose $x, y \in H$, which means $x^{2}=e$ and $y^{2}=e$. Using this with the fact that G is abelian we get $(x y)^{2}=(x y)(x y)=x y x y=x x y y=x^{2} y^{2}=e e=e$. Now, the fact that $(x y)^{2}=e$ means $x y \in H$, so H is closed.
(b) Observe $e \in H$ because $e^{2}=e$ means e satisfies the requirement for being in H.
(c) Suppose $a \in H$. This means $a^{2}=e$, or $a a=e$. Taking inverses of both sides gives $(a a)^{-1}=e^{-1}$, or $a^{-1} a^{-1}=e$, that is, $\left(a^{-1}\right)^{2}=e$, which means $a^{-1} \in H$.
Properties 1-3 above show that H is a subgroup of G.
51. Suppose G is a group and $a \in G$. Show that $H_{a}=\{x \in G \mid x a=a x\}$ is a subgroup of G.

Proof. We make the following observations:
(a) First we show H_{a} is closed. Suppose $x, y \in H_{a}$, which means $x a=a x$ and $y a=a y$. Using these facts combined with associativity of G, we get $(x y) a=x(y a)=x(a y)=(x a) y=(a x) y=a(x y)$. Thus $(x y) a=a(x y)$, so $x y$ meets the requirement for being in H_{a}, so $x y \in H_{a}$. This shows H_{a} is closed.
(b) Observe $e \in H_{a}$ because $e a=a e$, which means e satisfies the requirement for being in H_{a}.
(c) Suppose $x \in H_{a}$. This means $x a=a x$. Left-multiplying both sides by x^{-1} gives $a=x^{-1} a x$. Right-multiplying both sides of this by x^{-1} gives $a x^{-1}=x^{-1} a$, which means $x^{-1} \in H_{a}$.
Properties 1-3 above show that H is a subgroup of G.

