Section 2 Solutions

(2) $(a * b) * c=b * c=a$
$a *(b * c)=a * a=a$
Even though we've shown that $(a * b) * c=a *(b * c)$, that's no guarantee that the opeation $*$ is associative. We would have to show $(x * y) * z=x *(y * z)$ for all possible values of x, y and z. In fact, note that $(d * a) * b=b * b=c$ is unequal to $d *(a * b)=d * b=e$, so $*$ is NOT ASSOCIATIVE.
(4) The operation $*$ is NOT COMMUTATIVE because, for instance, $e * b=b$ but $b * e=c$.
(6) Suppose the following partial table is for an associative binary operation on $S=\{a, b, c, d\}$.

$*$	a	b	c	d
a	a	b	c	d
b	b	a	c	d
c	c	d	c	d
d				

The missing line should give the values of $d * x$ for the various x. To fill in this line, use the fact that the table gives $c * b=d$, together with the fact that $*$ is associative:

```
\(d * a=(c * b) * a=c *(b * a)=c * b=d\)
\(d * b=(c * b) * b=c *(b * b)=c * a=c\)
\(d * c=(c * b) * c=c *(b * c)=c * c=c\)
\(d * d=(c * b) * d=c *(b * d)=c * d=d\)
```

Thus the completed table is as follows

$*$	a	b	c	d
a	a	b	c	d
b	b	a	c	d
c	c	d	c	d
d	d	c	c	d

(10) Consider the binary operation on \mathbb{Z} defined as $a * b=2^{a b}$.

This is COMMUTATIVE because $a * b=2^{a b}=2^{b a}=b * a$ for all $a, b \in \mathbb{Z}$.
This is NOT ASSOCIATIVE because, in particular
$0 *(1 * 2)=0 *\left(2^{1 \cdot 2}\right)=0 * 4=2^{0 \cdot 4}=2^{0}=1$ but
$(0 * 1) * 2=\left(2^{0 \cdot 1}\right) * 2=1 * 2=2^{1 \cdot 2}=2^{2}=4$.
(36) Suppose $*$ is an associative binary operation on a set S, and $H=\{a \in S \mid a * x=x * a$ for all $x \in S\}$. Show H is closed under *.

Proof. Suppose that a and b are two arbitrary elements of H. To show H is closed, we must show that $a * b \in H$. And to show $a * b$ is in H we must show $a * b$ satisfies the requirement for being in H, that is we must show $(a * b) * x=x *(a * b)$ for every element x in S.
Let x be an arbitrary element of S. The fact that a and b are in H means

$$
\begin{align*}
a * x & =x * a \tag{1}\\
b * x & =x * b \tag{2}
\end{align*}
$$

Using (1) and (2) together with associativity of $*$, we deduce

$$
(a * b) * x=a *(b * x)=a *(x * b)=(a * x) * b=(x * a) * b=x *(a * b) .
$$

Thus $(a * b) * x=x *(a * b)$, which means $a * b \in H$, so H is closed.

