Section 2 Solutions

(2) (a * b) * c = b * c = aa * (b * c) = a * a = a

Even though we've shown that (a * b) * c = a * (b * c), that's no guarantee that the operation * is associative. We would have to show (x * y) * z = x * (y * z) for all possible values of x, y and z. In fact, note that (d * a) * b = b * b = c is unequal to d * (a * b) = d * b = e, so * is **NOT ASSOCIATIVE**.

- (4) The operation * is **NOT COMMUTATIVE** because, for instance, e * b = b but b * e = c.
- (6) Suppose the following partial table is for an associative binary operation on $S = \{a, b, c, d\}$.

* ab cdbcdaabb $a \ c \ d$ cc d c dd

The missing line should give the values of d * x for the various x. To fill in this line, use the fact that the table gives c * b = d, together with the fact that * is associative:

d * a = (c * b) * a = c * (b * a) = c * b = d d * b = (c * b) * b = c * (b * b) = c * a = c d * c = (c * b) * c = c * (b * c) = c * c = cd * d = (c * b) * d = c * (b * d) = c * d = d

Thus the completed table is as follows

*	a	b	c	d
a	a	b	c	d
b	b	a	c	d
c	c	d	c	d
d	d	c	c	d

- (10) Consider the binary operation on \mathbb{Z} defined as $a * b = 2^{ab}$. This is **COMMUTATIVE** because $a * b = 2^{ab} = 2^{ba} = b * a$ for all $a, b \in \mathbb{Z}$. This is **NOT ASSOCIATIVE** because, in particular $0 * (1 * 2) = 0 * (2^{1 \cdot 2}) = 0 * 4 = 2^{0 \cdot 4} = 2^0 = 1$ but $(0 * 1) * 2 = (2^{0 \cdot 1}) * 2 = 1 * 2 = 2^{1 \cdot 2} = 2^2 = 4$.
- (36) Suppose * is an associative binary operation on a set S, and $H = \{a \in S | a * x = x * a \text{ for all } x \in S\}$. Show H is closed under *.

Proof. Suppose that a and b are two arbitrary elements of H. To show H is closed, we must show that $a * b \in H$. And to show a * b is in H we must show a * b satisfies the requirement for being in H, that is we must show (a * b) * x = x * (a * b) for every element x in S.

Let x be an arbitrary element of S. The fact that a and b are in H means

$$a * x = x * a \tag{1}$$

$$b * x = x * b \tag{2}$$

Using (1) and (2) together with associativity of *, we deduce

$$(a * b) * x = a * (b * x) = a * (x * b) = (a * x) * b = (x * a) * b = x * (a * b).$$

Thus (a * b) * x = x * (a * b), which means $a * b \in H$, so H is closed.