Section 19 Solutions

4. Find all the solutions of $x^{2}+2 x+4=0$ in \mathbb{Z}_{6}.

Since \mathbb{Z}_{6} has only 6 elements, we can try them all:
$0^{2}+2 \cdot 0+4=4$
$1^{2}+2 \cdot 1+4=1$
$2^{2}+2 \cdot 2+4=0$
$3^{2}+2 \cdot 3+4=1$
$4^{2}+2 \cdot 4+4=4$
$5^{2}+2 \cdot 5+4=3$
Thus there is only one solution, $x=2$.
10. What is the characteristic of $\mathbb{Z}_{6} \times \mathbb{Z}_{15}$?

This is the smallest integer n for which $n(1,1)=(n, n)=(0,0)$.
So you can see that integer n must be divisible by both 6 and 15 .
The smallest such integer is 30 . Thus the characteristic is 30 .
14. Notice that $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]\left[\begin{array}{rr}2 & 2 \\ -1 & -1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, so $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ is a zero divisor in $M_{2}(\mathbb{Z})$.
20. Show that the characteristic of an integral domain D is either 0 or a prime number.

First, let's rewrite the statement in the form If A then B.
Here is the statement we must prove:
If D is an integral domain, then its characteristic is either 0 or prime.
Proof (By contradiction):
Suppose that it is not true that the characteristic is either 0 or prime.
Then the characteristic is a positive non-prime number.
Thus the characteristic can be written as a product $m n$ of two positive integers.
Then $m n(1)=0$, by definition of characteristic. This equation is
$0=1+1+1+\ldots+1$
($m n$ times)
$0=(1+1+\ldots+1)+(1+1+\ldots+1)+\ldots+(1+1+\ldots+1) \quad$ (m groups of $n 1$'s)
$0=n 1+n 1+\ldots+n 1 \quad$ (m times)
$0=n 1 \cdot 1+n 1 \cdot 1+\ldots+n 1 \cdot 1$
($a 1=a$)
$0=(n 1)(1+1+\ldots+1)$
(distributive property)
$0=(n 1)(m 1)$
But neither $n 1$ nor $m 1$ is 0 for each of m and n is smaller than the characteristic $m n$.
This means D has zero divisors $m 1$ and $n 1$, contradicting the fact that D is an integral domain. This contradiction proves the theorem.

