6. $(-3,5)(2,-4)=(-6,-20)=(2-(2 \cdot 4), 2-(2 \cdot 11))=(2,2)$ in $\mathbb{Z}_{2} \times \mathbb{Z}_{11}$.
7. Consider the set $R=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$. Is R a ring? Is R a field?

Notice that $R \subset \mathbb{R}$, so we are asking if R is a subgroup of \mathbb{R}.
First, note that R is an additive subgroup of \mathbb{R} :
(a) If $x, y \in R$ then $x=a+b \sqrt{2}$ and $y=a^{\prime}+b^{\prime} \sqrt{2}$ for appropriate rational numbers $a, b, a^{\prime}, b^{\prime}$. Then $x+y=(a+b \sqrt{2})+\left(a^{\prime}+b^{\prime} \sqrt{2}\right)=\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) \sqrt{2} \in R$, so R is closed under addition.
(b) Observe $0=0+0 \sqrt{2} \in R$.
(c) If $x \in R$ then $x=a+b \sqrt{2}$, so $-x=-a-b \sqrt{2}$ is also in R.

Next note that R is closed under multiplication, for if $x, y \in R$ then $x=a+b \sqrt{2}$ and $y=a^{\prime}+b^{\prime} \sqrt{2}$ for appropriate rational numbers $a, b, a^{\prime}, b^{\prime}$. So $x y=(a+b \sqrt{2})\left(a^{\prime}+b^{\prime} \sqrt{2}\right)=\left(a a^{\prime}+2 b b^{\prime}\right)+\left(a b^{\prime}+a^{\prime} b\right) \sqrt{2} \in R$. It follows that R is a subring of \mathbb{R}, so R is a ring.

Is R a field? Well, R is commutative because it's a subring of \mathbb{R}, and R contains the multiplicative identity $1=1+0 \sqrt{2}$. We just need to show that any nonzero element $a+b \sqrt{2}$ of R has a multiplicative inverse in R. Of course, in $\mathbb{R},(a+b \sqrt{2})^{-1}=\frac{1}{a+b \sqrt{2}}$, but the obvious question is if $\frac{1}{a+b \sqrt{2}}$ is in R. Observe:

$$
\frac{1}{a+b \sqrt{2}}=\frac{1}{a+b \sqrt{2}} \frac{a-b \sqrt{2}}{a-b \sqrt{2}}=\frac{a-b \sqrt{2}}{a^{2}-2 b^{2}}=\frac{a}{a^{2}-2 b^{2}}-\frac{b}{a^{2}-2 b^{2}} \sqrt{2}
$$

Since $a, b \in \mathbb{Q}$, it follows $\frac{a}{a^{2}-2 b^{2}}$ and $-\frac{b}{a^{2}-2 b^{2}}$ are in \mathbb{Q} too, hence $\frac{1}{a+b \sqrt{2}} \in R$. Thus R is a field.
18. Find all units in $\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$.

Suppose (a, b, c) is a unit in $\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$.
This means there is an element $\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \in \mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$ with $(a, b, c)\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\left(a a^{\prime}, b b^{\prime}, c c^{\prime}\right)=(1,1,1)$.
Since $a, a^{\prime} \in \mathbb{Z}$ and $a a^{\prime}=1$ it follows that $a= \pm 1$.
Since $b, b^{\prime} \in \mathbb{Z}$ and $b b^{\prime}=1$ it follows that $b= \pm 1$.
Since $c, c^{\prime} \in \mathbb{Q}$ and $c c^{\prime}=1$ it follows that $c \neq 0$ (and $c^{\prime}=1 / c$).
Thus the units in $\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$ are all the elements of form ($\pm 1, c, \pm 1$) with $c \neq 0$
That is, the units are $\{1,-1\} \times \mathbb{Q}^{*} \times\{1,-1\}$.
50. Suppose a is an element of a ring R and $I_{a}=\{x \in R \mid a x=0\}$. Show I_{a} is a subring of R.

Proof. First note that I_{a} is an additive subgroup of R :
(a) I_{a} is closed under addition: If $x, y \in I_{a}$ then $a x=0$ and $y x=0$. Then $0=a x+a y=a(x+y)$. But $a(x+y)=0$ means $x+y \in I_{n}$.
(b) The additive identity 0 is in I_{a} because $a 0=0$.
(c) If $x \in I_{n}$, then $a x=0$, hence $a(-x)=-(a x)=-0=0$, meaning $-x \in I_{a}$.

Now we just need to check I_{a} is closed under multiplication.
Suppose $x, y \in I_{a}$ so $a x=0$ and $y x=0$.
Then $a(x y)=(a x) y=0 y=0$.
But $a(x y)=0$ means $x y \in I_{a}$, so I_{a} is closed under multiplication.
Therefore I_{a} is a subring of R.

