- 6. $(-3,5)(2,-4) = (-6,-20) = (2 (2 \cdot 4), 2 (2 \cdot 11)) = (2,2)$ in $\mathbb{Z}_2 \times \mathbb{Z}_{11}$.
- 12. Consider the set $R = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$. Is R a ring? Is R a field?

Notice that $R \subset \mathbb{R}$, so we are asking if R is a subgroup of \mathbb{R} . First, note that R is an additive subgroup of \mathbb{R} :

- (a) If $x, y \in R$ then $x = a + b\sqrt{2}$ and $y = a' + b'\sqrt{2}$ for appropriate rational numbers a, b, a', b'. Then $x + y = (a + b\sqrt{2}) + (a' + b'\sqrt{2}) = (a + a') + (b + b')\sqrt{2} \in \mathbb{R}$, so \mathbb{R} is closed under addition.
- (b) Observe $0 = 0 + 0\sqrt{2} \in R$.
- (c) If $x \in R$ then $x = a + b\sqrt{2}$, so $-x = -a b\sqrt{2}$ is also in R.

Next note that R is closed under multiplication, for if $x, y \in R$ then $x = a + b\sqrt{2}$ and $y = a' + b'\sqrt{2}$ for appropriate rational numbers a, b, a', b'. So $xy = (a+b\sqrt{2})(a'+b'\sqrt{2}) = (aa'+2bb')+(ab'+a'b)\sqrt{2} \in \mathbb{R}$. It follows that R is a subring of \mathbb{R} , so R is a ring.

Is R a field? Well, R is commutative because it's a subring of \mathbb{R} , and R contains the multiplicative identity $1 = 1 + 0\sqrt{2}$. We just need to show that any nonzero element $a + b\sqrt{2}$ of R has a multiplicative inverse in R. Of course, in \mathbb{R} , $(a+b\sqrt{2})^{-1} = \frac{1}{a+b\sqrt{2}}$, but the obvious question is if $\frac{1}{a+b\sqrt{2}}$ is in

R. Observe:

$$\frac{1}{a+b\sqrt{2}} = \frac{1}{a+b\sqrt{2}}\frac{a-b\sqrt{2}}{a-b\sqrt{2}} = \frac{a-b\sqrt{2}}{a^2-2b^2} = \frac{a}{a^2-2b^2} - \frac{b}{a^2-2b^2}\sqrt{2}$$

Since $a, b \in \mathbb{Q}$, it follows $\frac{a}{a^2 - 2b^2}$ and $-\frac{b}{a^2 - 2b^2}$ are in \mathbb{Q} too, hence $\frac{1}{a + b\sqrt{2}} \in R$. Thus R is a field.

18. Find all units in $\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$.

Suppose (a, b, c) is a unit in $\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$. This means there is an element $(a', b', c') \in \mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$ with (a, b, c)(a', b', c') = (aa', bb', cc') = (1, 1, 1). Since $a, a' \in \mathbb{Z}$ and aa' = 1 it follows that $a = \pm 1$. Since $b, b' \in \mathbb{Z}$ and bb' = 1 it follows that $b = \pm 1$. Since $c, c' \in \mathbb{Q}$ and cc' = 1 it follows that $c \neq 0$ (and c' = 1/c). Thus the units in $\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$ are all the elements of form $(\pm 1, c, \pm 1)$ with $c \neq 0$ That is, the units are $\{1, -1\} \times \mathbb{Q}^* \times \{1, -1\}$.

50. Suppose a is an element of a ring R and $I_a = \{x \in R | ax = 0\}$. Show I_a is a subring of R.

Proof. First note that I_a is an additive subgroup of R:

- (a) I_a is closed under addition: If $x, y \in I_a$ then ax = 0 and yx = 0. Then 0 = ax + ay = a(x + y). But a(x+y) = 0 means $x+y \in I_n$.
- (b) The additive identity 0 is in I_a because a0 = 0.
- (c) If $x \in I_n$, then ax = 0, hence a(-x) = -(ax) = -0 = 0, meaning $-x \in I_a$.

Now we just need to check I_a is closed under multiplication. Suppose $x, y \in I_a$ so ax = 0 and yx = 0. Then a(xy) = (ax)y = 0y = 0. But a(xy) = 0 means $xy \in I_a$, so I_a is closed under multiplication. Therefore I_a is a subring of R.