Section 13 Solutions

2. Consider $\varphi: \mathbb{R} \rightarrow \mathbb{Z}$ be defined as $\varphi(x)=$ the greatest integer $\leq x$.

This is NOT a homomorphism, for the homomorphism property doesn't hold:
$\varphi(1.6+1.4)=\varphi(3)=3 \neq 2=1+1=\varphi(1.6)+\varphi(1.4)$
10 . Suppose F is the additive group of all functions $\mathbb{R} \rightarrow \mathbb{R}$.
Consider $\varphi: F \rightarrow \mathbb{R}$ defined as $\varphi(f)=\int_{0}^{4} f(x) d x$. This is a homomorphism because $\varphi(f+g)=\int_{0}^{4}(f+g)(x) d x=\int_{0}^{4}(f(x)+g(x)) d x=\int_{0}^{4} f(x) d x+\int_{0}^{g}(x) d x=\varphi(f)+\varphi(g)$.
16. Consider the homomorphism $\varphi: S_{3} \rightarrow \mathbb{Z}_{2}$ where $\varphi(\sigma)= \begin{cases}0 & \text { if } \sigma \text { is even } \\ 1 & \text { if } \sigma \text { is odd }\end{cases}$
$\operatorname{ker}(\varphi)=\left\{\sigma \in S_{3} \mid\right.$ if σ is even $\}=A_{3}=\left\{\rho_{0}, \rho_{1}, \rho_{2}\right\}$.
18. Consider the homomorphism $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}_{10}$ with $\varphi(1)=6$.

Notice the homomorphism property gives a formula for φ : $\varphi(n)=\varphi(1+1+1+\cdots+1)=\varphi(1)+\varphi(1)+\varphi(1)+\cdots \varphi(1)=n \varphi(1)=6 n$.
Thus $\varphi(18)=6 \cdot 18=108=8$
$\operatorname{ker}(\varphi)=\{n \in \mathbb{Z} \mid \varphi(m)=0\}=\{n \in \mathbb{Z} \mid 6 n=0\}=5 \mathbb{Z}$
(Because if $6 n=0$ in \mathbb{Z}_{10}, then $6 n$ must be a multiple of 10 , hence n is a multiple of 5)
24. Let $\varphi: \mathbb{Z} \times \mathbb{Z} \rightarrow S_{10}$ be such that $\varphi(1,0)=(3,5)(2,4)$ and $\varphi(0,1)=(1,7)(6,10,8,9)$.

As in the previous problem, there is a formula for φ :
$\varphi((m, n))=\varphi((m, 0)+(0, n))=\varphi(m(1,0)) \varphi(n(0,1))=$
$[\varphi((1,0)+(1,0)+\cdots+(10))][\varphi((0,1)+(0,1)+\cdots+(0,1))]=$ $\varphi(1,0)^{m} \varphi(0,1)^{n}=[(3,5)(2,4)]^{m}[(1,7)(6,10,8,9)]^{n}=(3,5)^{m}(2,4)^{m}(1,7)^{n}(6,10,8,9)^{n}$

Thus $\varphi(3,10)=(3,5)^{3}(2,4)^{3}(1,7)^{10}(6,10,8,9)^{10}=(3,5)(2,4)(6,8)(10,9)$
To find the kernel of φ, note that $\varphi((m, n))=(3,5)^{m}(2,4)^{m}(1,7)^{n}(6,10,8,9)^{n}$ will only be the identity permutation if m is a multiple of 2 and n is a multiple of 4 . Thus $\operatorname{ker}(\varphi)=2 \mathbb{Z} \times 4 \mathbb{Z}$.
50. Let $\varphi: G \rightarrow H$ be a homomorphism. Show that $\varphi[G]$ is abelian if and only if for all $x, y \in G$, we have $x y x^{-1} y^{-1} \in \operatorname{ker}(\varphi)$.
Proof. First, suppose $\varphi[G]$ is abelian. Denote the identity in H as e^{\prime}. Recall $\varphi[G]=\{\varphi(x) \mid x \in G\}$, so $\varphi[G]$ being abelian means that the following equation holds for all $x, y \in G$:

$$
\begin{equation*}
\varphi(x) \varphi(y)=\varphi(y) \varphi(x) \tag{1}
\end{equation*}
$$

Now let's check that $x y x^{-1} y^{-1} \in \operatorname{ker}(\varphi)$. Using the homomorphism property for φ followed by equation (1), we get $\varphi\left(x y x^{-1} y^{-1}\right)=\varphi(x) \varphi(y) \varphi\left(x^{-1}\right) \varphi\left(y^{-1}\right)=\varphi(x) \varphi\left(x^{-1}\right) \varphi(y) \varphi\left(y^{-1}\right)=\varphi\left(x x^{-1}\right) \varphi\left(y y^{-1}\right)$ $=\varphi(e) \varphi(e)=e^{\prime} e^{\prime}=e^{\prime}$. This shows $\varphi\left(x y x^{-1} y^{-1}\right)=e^{\prime}$, whence $x y x^{-1} y^{-1} \in \operatorname{ker}(\varphi)$.

Conversely, suppose $x y x^{-1} y^{-1} \in \operatorname{ker}(\varphi)$ for all $x, y \in G$. Take two arbitrary elements $\varphi(x)$ and $\varphi(y)$ in $\varphi[G]$. Since $x y x^{-1} y^{-1} \in \operatorname{ker}(\varphi)$, it follows $\varphi\left(x y x^{-1} y^{-1}\right)=e^{\prime}$, so $\varphi(x) \varphi(y) \varphi\left(x^{-1}\right) \varphi\left(y^{-1}\right)=e^{\prime}$, which becomes $\varphi(x) \varphi(y) \varphi(x)^{-1} \varphi(y)^{-1}=e^{\prime}$. Right-multiplying by $\varphi(y)$ and again by $\varphi(x)$ produces $\varphi(x) \varphi(y)=\varphi(y) \varphi(x)$, so $\varphi[G]$ is abelian.

