Section 13 Solutions

- 2. Consider $\varphi : \mathbb{R} \to \mathbb{Z}$ be defined as $\varphi(x) =$ the greatest integer $\leq x$. This is NOT a homomorphism, for the homomorphism property doesn't hold: $\varphi(1.6 + 1.4) = \varphi(3) = 3 \neq 2 = 1 + 1 = \varphi(1.6) + \varphi(1.4)$
- 10. Suppose F is the additive group of all functions $\mathbb{R} \to \mathbb{R}$. Consider $\varphi : F \to \mathbb{R}$ defined as $\varphi(f) = \int_0^4 f(x) dx$. This is a homomorphism because $\varphi(f+g) = \int_0^4 (f+g)(x) dx = \int_0^4 (f(x)+g(x)) dx = \int_0^4 f(x) dx + \int_0^g (x) dx = \varphi(f) + \varphi(g)$.
- 16. Consider the homomorphism $\varphi: S_3 \to \mathbb{Z}_2$ where $\varphi(\sigma) = \begin{cases} 0 & \text{if } \sigma \text{ is even} \\ 1 & \text{if } \sigma \text{ is odd} \\ \ker(\varphi) = \{\sigma \in S_3 | \text{ if } \sigma \text{ is even}\} = \boxed{A_3 = \{\rho_0, \rho_1, \rho_2\}.} \end{cases}$
- 18. Consider the homomorphism $\varphi : \mathbb{Z} \to \mathbb{Z}_{10}$ with $\varphi(1) = 6$.

Notice the homomorphism property gives a formula for φ : $\varphi(n) = \varphi(1+1+1+\dots+1) = \varphi(1) + \varphi(1) + \varphi(1) + \dots + \varphi(1) = n\varphi(1) = 6n.$ Thus $\varphi(18) = 6 \cdot 18 = 108 = \boxed{8}$ $\ker(\varphi) = \{n \in \mathbb{Z} | \varphi(m) = 0\} = \{n \in \mathbb{Z} | 6n = 0\} = \boxed{5\mathbb{Z}}$

(Because if 6n = 0 in \mathbb{Z}_{10} , then 6n must be a multiple of 10, hence n is a multiple of 5)

24. Let $\varphi : \mathbb{Z} \times \mathbb{Z} \to S_{10}$ be such that $\varphi(1,0) = (3,5)(2,4)$ and $\varphi(0,1) = (1,7)(6,10,8,9)$.

As in the previous problem, there is a formula for φ :

$$\begin{aligned} \varphi((m,n)) &= \varphi((m,0) + (0,n)) = \varphi(m(1,0))\varphi(n(0,1)) = \\ [\varphi((1,0) + (1,0) + \dots + (10))][\varphi((0,1) + (0,1) + \dots + (0,1))] &= \\ \varphi(1,0)^m \varphi(0,1)^n &= [(3,5)(2,4)]^m [(1,7)(6,10,8,9)]^n = (3,5)^m (2,4)^m (1,7)^n (6,10,8,9)^n \end{aligned}$$

Thus $\varphi(3,10) = (3,5)^3(2,4)^3(1,7)^{10}(6,10,8,9)^{10} = (3,5)(2,4)(6,8)(10,9)$

To find the kernel of φ , note that $\varphi((m,n)) = (3,5)^m (2,4)^m (1,7)^n (6,10,8,9)^n$ will only be the identity permutation if m is a multiple of 2 and n is a multiple of 4. Thus $\ker(\varphi) = 2\mathbb{Z} \times 4\mathbb{Z}$.

50. Let $\varphi : G \to H$ be a homomorphism. Show that $\varphi[G]$ is abelian if and only if for all $x, y \in G$, we have $xyx^{-1}y^{-1} \in \ker(\varphi)$.

Proof. First, suppose $\varphi[G]$ is abelian. Denote the identity in H as e'. Recall $\varphi[G] = \{\varphi(x) | x \in G\}$, so $\varphi[G]$ being abelian means that the following equation holds for all $x, y \in G$:

$$\varphi(x)\varphi(y) = \varphi(y)\varphi(x). \tag{1}$$

Now let's check that $xyx^{-1}y^{-1} \in \ker(\varphi)$. Using the homomorphism property for φ followed by equation (1), we get $\varphi(xyx^{-1}y^{-1}) = \varphi(x)\varphi(y)\varphi(x^{-1})\varphi(y^{-1}) = \varphi(x)\varphi(x^{-1})\varphi(y)\varphi(y^{-1}) = \varphi(xx^{-1})\varphi(yy^{-1}) = \varphi(e)\varphi(e) = e'e' = e'$. This shows $\varphi(xyx^{-1}y^{-1}) = e'$, whence $xyx^{-1}y^{-1} \in \ker(\varphi)$.

Conversely, suppose $xyx^{-1}y^{-1} \in \ker(\varphi)$ for all $x, y \in G$. Take two arbitrary elements $\varphi(x)$ and $\varphi(y)$ in $\varphi[G]$. Since $xyx^{-1}y^{-1} \in \ker(\varphi)$, it follows $\varphi(xyx^{-1}y^{-1}) = e'$, so $\varphi(x)\varphi(y)\varphi(x^{-1})\varphi(y^{-1}) = e'$, which becomes $\varphi(x)\varphi(y)\varphi(x)^{-1}\varphi(y)^{-1} = e'$. Right-multiplying by $\varphi(y)$ and again by $\varphi(x)$ produces $\varphi(x)\varphi(y)\varphi(x)$, so $\varphi[G]$ is abelian.