## Section 11 Solutions

(2) Consider the group $\mathbb{Z}_{3} \times \mathbb{Z}_{4}=\{(0,0),(1,0),(2,0),(0,1),(0,1),(2,1),(0,2),(1,2),(2,2),(0,4),(1,4),(2,4)\}$. Let's look at the cyclic groups generated by these elements in order to find their orders.
$\langle(0,0)\rangle=\{(0,0)\}$, so $(0,0)$ has order 1 .
$\langle(1,0)\rangle=\{(1,0),(2,0),(0,0)\}$, so $(1,0)$ has order 3 .
$\langle(2,0)\rangle=\{(2,0),(1,0),(0,0)\}$, so $(2,0)$ has order 3 .
$\langle(0,1)\rangle=\{(0,1),(0,2),(0,2),(0,0)\}$, so $(0,1)$ has order 4 .
$\langle(1,1)\rangle=\{(1,1),(2,2),(0,3),(1,0),(2,1),(0,2),(1,3),(2,0),(0,1),(1,2),(2,3),(0,0)\}$, so $(1,1)$ has order 12 .
$\langle(2,1)\rangle=\{(2,1),(1,2),(0,3),(2,0),(1,1),(0,2),(2,3),(1,0),(0,1),(2,2),(1,3),(0,0)\}$, so $(2,1)$ has order 12 .
$\langle(0,2)\rangle=\{(0,2),(0,0)\}$, so $(0,2)$ has order 2 .
$\langle(1,2)\rangle=\{(1,2),(2,0),(0,2),(1,0),(2,2),(0,0)\}$, so $(1,2)$ has order 6 .
$\langle(2,2)\rangle=\{(2,2),(1,0),(0,2),(2,0),(1,2),(0,0)\}$, so $(2,2)$ has order 6.
$\langle(0,3)\rangle=\{(0,3),(0,2),(0,1),(0,0)\}$, so $(0,3)$ has order 4.
$\langle(1,3)\rangle=\{(1,3),(2,2),(0,1),(1,0),(2,3),(0,2),(1,1),(2,0),(0,3),(1,2),(2,1),(0,0)\}$, so $(1,3)$ has order 12.
$\langle(2,3)\rangle=\{(2,3),(1,2),(0,1),(2,0),(1,3),(0,2),(2,1),(1,0),(0,3),(2,2),(1,1),(0,0)\}$, so $(2,3)$ has order 12.

From this, you can see that the group $\mathbb{Z}_{3} \times \mathbb{Z}_{4}$ is cyclic because it can be generated by a single element.
(12) Find all subgroups of $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4}$ that are isomorphic to the Klein 4 -group.

Here are the ones I found:
$H=\{(0,0,0),(1,0,0),(0,1,0),(1,1,0)\}$
$H=\{(0,0,0),(1,0,0),(0,0,2),(1,0,2)\}$
$H=\{(0,0,0),(0,1,0),(0,0,2),(0,1,2)\}$
$H=\{(0,0,0),(1,1,0),(0,0,2),(1,1,2)\}$
$H=\{(0,0,0),(1,0,2),(0,1,0),(1,1,2)\}$
$H=\{(0,0,0),(0,1,2),(1,0,0),(1,1,2)\}$
$H=\{(0,0,0),(1,0,2),(1,1,0),(0,1,2)\}$
(16) Are $\mathbb{Z}_{2} \times \mathbb{Z}_{12}$ and $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ isomorphic?

Notice that:
$\mathbb{Z}_{2} \times \mathbb{Z}_{12} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{4}$ and
$\mathbb{Z}_{4} \times \mathbb{Z}_{6} \cong \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{2}$
so from this you can see that $\mathbb{Z}_{2} \times \mathbb{Z}_{12} \cong \mathbb{Z}_{4} \times \mathbb{Z}_{6}$.
(24) List all finite abelian groups of order 720, up to isomorphism. (That is, no two groups on you list should be isomorphic, but if $G$ is a given abelian group of order 720 , your list must contain $G$ or something isomorphic to $G$.)

Since $720=2^{4} \cdot 5 \cdot 3^{2}$, the groups are as follows.
$\mathbb{Z}_{16} \times \mathbb{Z}_{5} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$
$\mathbb{Z}_{16} \times \mathbb{Z}_{5} \times \mathbb{Z}_{9}$
$\mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$
$\mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5} \times \mathbb{Z}_{9}$
$\mathbb{Z}_{2} \times \mathbb{Z}_{8} \times \mathbb{Z}_{5} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$
$\mathbb{Z}_{2} \times \mathbb{Z}_{8} \times \mathbb{Z}_{5} \times \mathbb{Z}_{9}$
$\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$
$\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5} \times \mathbb{Z}_{9}$
$\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$
$\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{9}$

