Section 10 Solutions

2. Find the cosets of the subgroup $4 \mathbb{Z}$ of $2 \mathbb{Z}$.

There are two cosets:

$$
4 \mathbb{Z}=\{\ldots,-8,-4,0,4,8,12,16, \ldots\}=\{4 k \mid k \in \mathbb{Z}\}
$$

$$
2+4 \mathbb{Z}=\{\ldots,-6,-2,2,6,10,14,18, \ldots\}=\{2+4 k \mid k \in \mathbb{Z}\}
$$

4. Find all cosets of the subgroup $\langle 4\rangle=\{0,4,8\}$ of \mathbb{Z}_{12}.

$$
\begin{aligned}
\langle 4\rangle & =\{0,4,8\} \\
1+\langle 4\rangle & =\{1,5,9\} \\
2+\langle 4\rangle & =\{2,6,10\} \\
3+\langle 4\rangle & =\{3,7,11\}
\end{aligned}
$$

12. Find the index of the subgroup $\langle 3\rangle=\{0,3,6,9,12,15,18,21\}$ in \mathbb{Z}_{24}.

The index is $\frac{\left|\mathbb{Z}_{24}\right|}{|\langle 3\rangle|}=\frac{24}{8}=3$.
16. Consider $\mu=(1,2,4,5)(3,6) \in S_{6}$. Find the index of the subgroup $\langle\mu\rangle$.

Note $\langle\mu\rangle=\{(1,2,4,5)(3,6),(1,4)(2,5),(1,5,2,1)(3,6),()\}$
The index is $\frac{\left|S_{6}\right|}{|\langle\mu\rangle|}=\frac{6!}{4}=180$.
29. Suppose $H \leq G$ has the property that $g^{-1} h g \in H$ for all $h \in H$ and $g \in G$.

Show that $g H=H g$ for every element $g \in G$.

Proof. Assume g is an arbitrary but fixed element of G.

First we show $g H \subseteq H g$. Suppose $x \in g H$. By definition of $g H$, this means $x=g h$ for some $h \in H$. Then $x=g h=\left(g^{-1}\right)^{-1} h=\left(g^{-1}\right)^{-1} h g^{-1} g=\left[\left(g^{-1}\right)^{-1} h g^{-1}\right] g$. The property that H is assumed to have gives $\left(g^{-1}\right)^{-1} h g^{-1} \in H$, so $x=h^{\prime} g$ for $h^{\prime}=\left(g^{-1}\right)^{-1} h g^{-1} \in H$. Consequently $x \in H g$, so $g H \subseteq H g$.

Next we show $H g \subseteq g H$. Suppose $x \in H g$. By definition of $H g$, this means $x=h g$ for some $h \in H$. Then $x=h g=g\left(g^{-1} h g\right)$. By assumption, $g^{-1} h g \in H$, so $x=g h^{\prime}$ for $h^{\prime}=g^{-1} h g \in H$. This means $x \in g H$, so $H g \subseteq g H$.

Since $g H \subseteq H g$ and $H g \subseteq g H$, it follows that $g H=H g$

