Section 4 Solutions

31. An element x of a group G is called idempotent if $x * x=x$. Prove that any group G has exactly one idempotent element.

Proof. Certainly e is idempotent, because $e * e=e$, so G has at least one idempotent element, e. Could there be others? Suppose $x \in G$ is idempotent, which means $x * x=x$. Then:

$$
\begin{array}{rlr}
(x * x) * x^{\prime} & =x * x^{\prime} & \text { (multiply both sides by } x^{\prime} \text { on right) } \\
x *\left(x * x^{\prime}\right) & =e & \text { (associative and inverse properties) } \\
x * e & =e & \text { (inverse property) } \\
x & =e & \text { (identity property) }
\end{array}
$$

Thus $x=e$, so G has exactly one idempotent element, and it is e.
32. If every element x in a group G satisfies $x * x=e$, then G is abelian.

Proof. Let a and b be arbitrary elements of G. We wish to show $a * b=b * a$. Consider the element $a * b \in G$. Since every element x of G satisfies $x * x=e$, we have $(a * b) *(a * b)=e$. Let us work with this equation as follows.

$$
\begin{array}{rlr}
(a * b) *(a * b) & =e & \\
a *[(a * b) *(a * b)] & =a * e & \text { (multiply both sides by } a \text { on left) } \\
{[a *(a * b)] *(a * b)} & =a & \text { (associative and identity properties) } \\
[(a * a) * b)] *(a * b) & =a & \text { (associative property) } \\
{[e * b] *(a * b)} & =a & (a * a=e) \\
b *(a * b) & =a & \text { (identity property) } \\
{[b *(a * b)] * b} & =a * b & \text { (multiply both sides by } b \text { on right) } \\
b *[(a * b) * b] & =a * b & \text { (associative property) } \\
b *[a *(b * b)] & =a * b & \text { (associative property) } \\
b *[a * e] & =a * b & \text { (} b * b=e) \\
b * a & =a * b & \text { (identity property) }
\end{array}
$$

This shows $a * b=b * a$, so G is abelian.
34. Let G be a finite group. Show that for any $a \in G$ there is an $n \in \mathbb{Z}^{+}$for which $a^{n}=e$.

Proof. Suppose G is finite, and say it has m elements. Consider the following list of elements of G :

$$
a^{1}, a^{2}, a^{3}, a^{4}, \cdots a^{m+1}
$$

Since this list has $m+1$ items in it, and G contains only m elements, it follows that the list has at least two items that are equal. Thus $a^{j}=a^{k}$ for some integers j and k with $1 \leq j<k \leq m+1$. Then

$$
\begin{aligned}
a^{j} & =a^{k} \\
a^{j}\left(a^{-1}\right)^{j} & =a^{k}\left(a^{-1}\right)^{j} \\
a^{j} a^{-j} & =a^{k} a^{-j} \\
a^{j-j} & =a^{k-j} \\
a^{0} & =a^{k-j} \\
e & =a^{k-j}
\end{aligned}
$$

Setting $n=k-j$, it follows that $a^{n}=e$.
37. Suppose a, b, c are elements of a group G and $a * b * c=e$. Show $b * c * a=e$.

Proof. The associative property gives us license to omit the parentheses, and since they do not appear in this problem we are invited to not to use them. Starting with $a * b * c=e$ do the following.

$$
\begin{array}{rlr}
a * b * c & =e & \\
a^{\prime} * a * b * c & =a^{\prime} * e & \text { (multiply both sides by } a^{\prime} \text { on left) } \\
e * b * c & =a^{\prime} & \text { (inverse and identity properties) } \\
b * c & =a^{\prime} & \text { (identity property) } \\
b * c * a & =a^{\prime} * a & \text { (multiply both sides by } a \text { on right) } \\
b * c * a & =e & \text { (inverse property) }
\end{array}
$$

This completes the proof that $b * c * a=e$.

