Section 3 Solutions

8. Consider the binary structures $\left\langle M_{2}(\mathbb{R}), \cdot\right\rangle$ and $\langle\mathbb{R}, \cdot\rangle$, and the map $\varphi: M_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ defined as $\varphi(A)=\operatorname{det}(A)$. Is φ an isomorphism?

Notice that a property of determinants gives $\varphi(A \cdot B)=\operatorname{det}(A \cdot B)=\operatorname{det}(A) \cdot \operatorname{det}(B)=\varphi(A) \cdot \varphi(B)$, so φ does satisfy the homomorphism property. Also, φ is onto, for if $y \in \mathbb{R}$, then $\varphi\left(\left[\begin{array}{ll}y & 0 \\ 0 & 1\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{ll}y & 0 \\ 0 & 1\end{array}\right]\right)=y$. So far so good. However, φ is not one-to-one because $\varphi\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]\right)=\varphi\left(\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]\right)=2$, but $\left[\begin{array}{cc}1 & 0 \\ 0 & 2\end{array}\right] \neq\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$. Therefore φ is NOT an isomorphism.
18. (a) Consider the one-to-one and onto $\operatorname{map} \varphi: \mathbb{Q} \rightarrow \mathbb{Q}$ defined as $\varphi(x)=3 x-1$. Describe a binary operation $*$ on \mathbb{Q} so that φ is an isomorphism from $\langle\mathbb{Q},+\rangle$ to $\langle\mathbb{Q}, *\rangle$.
Note that for any $x \in \mathbb{Q}$ we have $\varphi\left(\frac{x+1}{3}\right)=x$.
Now we want to find out what $a * b$ equals. From the above line, and from the fact that the condition $\varphi(x) * \varphi(y)=\varphi(x+y)$ must hold, we get:

$$
a * b=\varphi\left(\frac{a+1}{3}\right) * \varphi\left(\frac{b+1}{3}\right)=\varphi\left(\frac{a+1}{3}+\frac{b+1}{3}\right)=\varphi\left(\frac{a+b+2}{3}\right)=3 \frac{a+b+2}{3}-1=a+b+1
$$

Therefore our binary operation is $a * b=a+b+1$.
For this particular binary operation the element $-1 \in \mathbb{Q}$ is the identity because $-1 * a=-1+a+1=a$.
(b) Consider the one-to-one and onto $\operatorname{map} \varphi: \mathbb{Q} \rightarrow \mathbb{Q}$ defined as $\varphi(x)=3 x-1$. Describe a binary operation $*$ on \mathbb{Q} so that φ is an isomorphism from $\langle\mathbb{Q}, *\rangle$ to $\langle\mathbb{Q},+\rangle$.

Since φ must have the homomorphism property, we have

$$
\begin{aligned}
\varphi(a * b) & =\varphi(a)+\varphi(b) \\
3(a * b)-1 & =3 a-1+3 b-1 \\
3(a * b) & =3 a+3 b-1 \\
a * b & =a+b-\frac{1}{3}
\end{aligned}
$$

Thus $*$ is defined as $a * b=a+b-\frac{1}{3}$.
To see that φ is an isomorphism, notice that it satisfies the homomorphism property:

$$
\varphi(a * b)=\varphi\left(a+b-\frac{1}{3}\right)=3\left(a+b-\frac{1}{3}\right)-1=3 a+3 b-2=(3 a-1)+(3 b-1)=\varphi(a)+\varphi(b) .
$$

Since $a * \frac{1}{3}=a=\frac{1}{3} * a$, for all $a \in \mathbb{Q}$, it follows that $\frac{1}{3}$ is the identity.
26. Prove that if $\varphi: S \rightarrow S^{\prime}$ is an isomorphism from $\langle S, *\rangle$ to $\left\langle S^{\prime}, *^{\prime}\right\rangle$, then $\varphi^{-1}: S^{\prime} \rightarrow S$ is an isomorphism from $\left\langle S^{\prime}, *^{\prime}\right\rangle$ to $\langle S, *\rangle$.

First, since φ is one-to-one and onto, its inverse φ^{-1} is also one-to-one and onto. (One-to-one because if $\varphi^{-1}(a)=\varphi^{-1}(b)$, then $\varphi\left(\varphi^{-1}(a)\right)=\varphi\left(\varphi^{-1}(b)\right)$, so $a=b$; Onto because if $y \in S$, then $\varphi^{-1}(\varphi(y))=y$.)

Therefore, we just need to show that φ satisfies the homomorphism property. Given arbitrary elements $x, y \in S^{\prime}$, notice that

$$
\begin{aligned}
\varphi^{-1}\left(x *^{\prime} y\right) & =\varphi^{-1}\left[\varphi\left(\varphi^{-1}(x)\right) *^{\prime} \varphi\left(\varphi^{-1}(y)\right)\right] \\
& =\varphi^{-1}\left[\varphi\left(\varphi^{-1}(x) * \varphi^{-1}(y)\right)\right] \\
& =\varphi^{-1}(x) * \varphi^{-1}(y)
\end{aligned}
$$

$$
\text { (because } \left.x=\varphi\left(\varphi^{-1}(x)\right), \text { et } c\right)
$$

$$
\left(\text { because } \varphi(z) *^{\prime} \varphi(w)=\varphi(z * w)\right)
$$

$$
\text { (because } \left.\varphi^{-1}(\varphi(z))=z\right)
$$

Thus we have shown that $\varphi^{-1}\left(x *^{\prime} y\right)=\varphi^{-1}(x) * \varphi^{-1}(y)$, which shows that φ^{-1} has the homomorphism property.
In summary, since $\varphi^{-1}: S^{\prime} \rightarrow S$ is one-to-one and onto and satisfies the homomorphism property, it is an isomorphism of $\left\langle S^{\prime}, *^{\prime}\right\rangle$ with $\langle S, *\rangle$.

