4. (25 pts.) Suppose D is the cylinder whose base is the unit circle on the $x y$-plane, and whose top lies on the plane $z=2$.
Compute the integral $\iiint_{D} r^{2} z^{3} d V$.
(Use cylindrical coordinates.)

VCU
 MATH 307
 Multivariate Calculus

R. Hammack

Test 3

November 8, 2013

Name: \qquad

Score: \qquad
Directions. Solve the following questions in the space provided. Unless noted otherwise, you must show your work to receive full credit. This is a closed-book, closednotes test. Calculators, computers, etc., are not used. Put a your final answer in a box, where appropriate.

1. (25 points) Consider the integral
$\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}}(x+2 y) d y d x$.
(a) Sketch the region of integration.

(b) Convert the integral to a polar integral.
(c) Evaluate your answer from part (b).
2. (25 pts.) Consider the region D bounded by the $x y$-plane, the graph of $y=x^{2}$, and the plane $y+z=1$.

(a) Set up a triple integral for the volume of D .
(b) Evaluate the integral to get the volume.
3. (25 pts .) Find the average value of the function
$f(x, y)=\sin (x+y)$ on the rectangle $0 \leqslant x \leqslant \pi$,
4. $\begin{aligned}(25 \text { pts. }) \\ f(x, y)=s \\ 0 \leqslant y \leqslant \frac{\pi}{2} .\end{aligned}$
ind the 2 , ,路

$$
(2
$$

