4. (25 pts.) Suppose D is the cylinder whose base is the unit circle on the xy-plane, and whose top lies on the plane z = 2.

Compute the integral
$$\iiint_{D} r^2 z^3 dV.$$

(Use cylindrical coordinates.)

VCU
MATH 307
Multivariate Calculus
MULTIVARIATE CALCULUS
R. Hammack
Test 3
November 8, 2013
Name:
Tuffic
Score:
Directions. Solve the following questions in the space
provided. Unless noted otherwise, you must show your
work to receive full credit. This is a closed-book, closed-
notes test. Calculators, computers, etc., are not used.
Put a your final answer in a box, where appropriate.

1. (25 points) Consider the integral

$$\int_0^1 \int_x^{\sqrt{2-x^2}} (x+2y) \, dy \, dx.$$

(a) Sketch the region of integration.

(b) Convert the integral to a polar integral.

(c) Evaluate your answer from part (b).

2. (25 pts.) Consider the region D bounded by the xy-plane, the graph of $y = x^2$, and the plane y + z = 1.

(a) Set up a triple integral for the volume of D.

(b) Evaluate the integral to get the volume.

3. (25 pts.) Find the average value of the function $f(x,y) = \sin(x+y)$ on the rectangle $0 \le x \le \pi$, $0 \le y \le \frac{\pi}{2}$.