VCU
 MATH 307
 Multivariate Calculus

R. Hammack

Sample Test 2

October 7, 2013

Name: \qquad

Score: \qquad
Directions. Solve the following questions in the space provided. Unless noted otherwise, you must show your work to receive full credit. This is a closed-book, closednotes test. Calculators, computers, etc., are not used. Put a your final answer in a box, where appropriate.
6. (10 pts.) Find the equation of the tangent plane to $f(x, y)=2 x^{4}-x y^{2}+3 y^{2}$ at the point $(1,1,4)$.

1. (25 points) Consider the function $z=f(x, y)=x y-x$.
(a) What is the domain of f ?
(b) Sketch the level curves for $z=1$ and $z=0$.
(c) $\nabla f(x, y)=$
(d) Find the rate of change of $f(x, y)$ in the direction of $\langle 3,5\rangle$ at the point $(7,3)$.

2. (20 pts.) Evaluate each limit, if possible; if not, explain why it does not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{5 x^{3}-5 y^{2} x}{x^{2}-y x}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}-2 y^{2}}$
3. (15 pts.) Find the maximum and minimum values (and their locations) of the function $f(x, y)=x^{2}+y^{2}$ subject to the constraint $\frac{x^{2}}{4}+\frac{y^{2}}{16}=1$.
4. (15 pts.) Suppose $f(x, y)$ is a function for which $\nabla f(15,2)=\langle 6,-3\rangle$. Suppose $g(t)=f\left(t^{2}-1, \sqrt{\mathfrak{t}}\right)$. Find $g^{\prime}(4)$.
5. (15 pts.) Consider $f(x, y)=\frac{x^{3}}{3}-x+y^{2}$.

Find all critical points; classify them as local maxima, local minima or saddle points.

