
VCU
MATH 307
Multivariate Calculus
R. Hammack
Sample Test 2
October 7, 2013
Name:
Score:
Directions. Solve the following questions in the space
provided. Unless noted otherwise, you must show your
work to receive full credit. This is a closed-book, closed-
notes test. Calculators, computers, etc., are not used. Put a your final answer in a box , where appropriate.
i ut a your mar answer m a box, where appropriate.

- **1.** (25 points) Consider the function z = f(x, y) = xy x.
 - (a) What is the domain of f?
 - (b) Sketch the level curves for z = 1 and z = 0.
 - (c) $\nabla f(x, y) =$
 - (d) Find the rate of change of f(x, y) in the direction of (3, 5) at the point (7, 3).

6. (10 pts.) Find the equation of the tangent plane to $f(x, y) = 2x^4 - xy^2 + 3y^2$ at the point (1, 1, 4).

Good Luck!

2. (20 pts.) Evaluate each limit, if possible; if not, explain why it does not exist.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{5x^3 - 5y^2x}{x^2 - yx}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2-2y^2}$$

3. (15 pts.) Find the maximum and minimum values (and their locations) of the function $f(x, y) = x^2 + y^2$ subject to the constraint $\frac{x^2}{4} + \frac{y^2}{16} = 1$.

4. (15 pts.) Suppose f(x, y) is a function for which $\nabla f(15, 2) = \langle 6, -3 \rangle$. Suppose $g(t) = f(t^2 - 1, \sqrt{t})$. Find g'(4).

5. (15 pts.) Consider $f(x, y) = \frac{x^3}{3} - x + y^2$.

Find all critical points; classify them as local maxima, local minima or saddle points.