

1. (30 pts.) Consider function $z=f(x, y)=\ln \left(x^{2}+y^{2}\right)$.
(a) State the domain of f.
(b) State the range of f.
(d) $\mathrm{f}\left(0, \frac{1}{e}\right)=$
(d) Sketch the level curve for $z=\ln (4)$.
(e) $\nabla f(x, y)=$
(f) Find the rate of change of $f(x, y)$ in the direction of $\langle 5,5\rangle$ at the point $(1,3)$.

2. (24 pts.) Evaluate each limit, if possible; if not, explain why it does not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x-y}{x+y}$
(b) $\lim _{(x, y) \rightarrow(1,1)} \frac{x y-y-2 x+2}{x-1}$
3. (20 pts.) Consider the function $f(x, y)=e^{4 x-x^{2}-y^{2}}$. Find all local maxima, local minima and/or saddle points.
4. (16 pts.) Consider $f(x, y)=\ln (x y) \tan ^{-1}(x)$.
(a) $\frac{\partial f}{\partial x}=$
(b) $\frac{\partial f}{\partial y}=$
(c) $\frac{\partial^{2} f}{\partial y \partial x}=$
(d) $f_{x}(1,1)=$
5. (10 pts.) Sketch the domain of

$$
f(x, y)=\frac{\sqrt{1-x+y}}{x+2}
$$

