VCU
MATH 307
Multivariate Calculus
R. Hammack
Test 2
October 11, 2013
Name:
Score:
Directions. Solve the following questions in the space
provided. Unless noted otherwise, you must show your
work to receive full credit. This is a closed-book, closed-
Put a your final answer in a box, where appropriate.

1. (30 pts.) Consider function $z = f(x, y) = \ln(x^2 + y^2)$.

GOOD LUCK!

- (a) State the domain of f.
- **(b)** State the range of f.
- (d) $f(0, \frac{1}{e}) =$
- (d) Sketch the level curve for $z = \ln(4)$.

- (e) $\nabla f(x, y) =$
- (f) Find the rate of change of f(x, y) in the direction of $\langle 5, 5 \rangle$ at the point (1, 3).

2. (24 pts.) Evaluate each limit, if possible; if not, explain why it does not exist.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x-y}{x+y}$$

(b)
$$\lim_{(x,y)\to(1,1)} \frac{xy-y-2x+2}{x-1}$$

3. (20 pts.) Consider the function $f(x, y) = e^{4x - x^2 - y^2}$. Find all local maxima, local minima and/or saddle points.

4. (16 pts.) Consider $f(x,y) = \ln(xy) \tan^{-1}(x)$.

(a)
$$\frac{\partial f}{\partial x} =$$

(b)
$$\frac{\partial f}{\partial y} =$$

(c)
$$\frac{\partial^2 f}{\partial y \partial x} =$$

(d)
$$f_x(1,1) =$$

5. (10 pts.) Sketch the domain of

$$f(x,y) = \frac{\sqrt{1-x+y}}{x+2}.$$

