6. (14 pts.) Find the radian measure of the angle formed by the vectors $\langle 2,1,1\rangle$ and $\langle\sqrt{3}, 0, \sqrt{3}\rangle$.

R. Hammack
Name: Test 1
Score:Firections. Solve the following questions in the space 2014 Grovided. Unless noted otherwise, you must show your work to receive full credit. This is a closed-book, closed- notes test. Calculators, computers, etc., are not used. Put a your final answer in a box, where appropriate.

1. (14 pts.) Find the distance between the point $P(0,0,1)$ and the line $\mathbf{r}(\mathrm{t})=\langle 1,5,2\rangle+\mathrm{t}\langle 1,1,1\rangle$.
2. (14 pts.) Find the area of the triangle with vertices $\mathrm{A}(1,-1,1), \mathrm{B}(0,1,1), \mathrm{C}(1,0,3)$.
3. This page concerns the line $x=2 t+1, y=3 t+2, z=4 t+3$, as well as the line $x=s+2, y=2 s+4, z=-4 s-1$.
(a) (10 pts.) These lines intersect at a point. Find it.
(b) (10 pts.) Note that the vector $\langle-20,12,1\rangle$ is orthogonal to both lines.

Use this information to find an equation of the plane containing the two lines.
(c) (10 pts.) Find the point where the line $\mathbf{r}(\mathrm{t})=\langle\mathrm{t}, 2 \mathrm{t}, 3 \mathrm{t}\rangle$ intersects the plane from part (b), above.
4. (14 pts.) Find the length of the following curve:

$$
\mathbf{r}(\mathrm{t})=\left\langle e^{\mathrm{t}} \cos \mathrm{t}, \mathrm{e}^{\mathrm{t}}, \mathrm{e}^{\mathrm{t}} \sin \mathrm{t}\right\rangle, \text { where }-\ln (4) \leqslant \mathrm{t} \leqslant 0
$$

5. (14 pts.) Find $\mathbf{r}(\mathrm{t})$ if $\frac{\mathrm{d} \mathbf{r}}{\mathrm{dt}}=\left\langle\frac{2}{3} \sqrt{\mathrm{t}+1}, e^{-\mathrm{t}}, \frac{1}{\mathrm{t}+1}\right\rangle$ and $\mathbf{r}(0)=\langle 0,0,1\rangle$.
