6. (10 pts.) Consider the following vectors:
$\mathbf{u}=\langle 1,3,-2\rangle, \quad \mathbf{v}=\langle 2,2,4\rangle$, and $\mathbf{w}=\left\langle-1,-2, \frac{3}{2}\right\rangle$.
State all pairs that are orthogonal to each other.
7. (25 points) Let $\mathbf{u}=\langle 1,1,0\rangle$ and $\mathbf{v}=\langle 0,-1,1\rangle$.
(a) $|\mathbf{u}|=$
(b) Find a unit vector with the same direction as \mathbf{u}.
(c) $\mathbf{u} \cdot \mathbf{v}=$
(d) Find the angle θ between \mathbf{u} and \mathbf{v}.
(e) Find a vector orthogonal to both \mathbf{u} and \mathbf{v}.
8. (20 pts.) Consider the vectors $\mathbf{u}=\langle 1,1,3\rangle$ and $\mathbf{v}=\langle-1,2,1\rangle$ (in standard position).
(a) Find the area of the parallelogram formed by \mathbf{u} and \mathbf{v}.
(b) Find the equation of the plane that \mathbf{u} and \mathbf{v} lie in.
9. (15 pts .) Find the distance between the point $\mathrm{P}(5,1,4)$ and the plane whose equation is $3 x-2 y+z=6$.
10. (15 pts.) Find the length of the curve $\mathbf{r}(\mathrm{t})=\left\langle\mathrm{t}, 1, \frac{2}{3} \mathrm{t}^{3 / 2}\right\rangle$ for $0 \leqslant \mathrm{t} \leqslant 8$.
11. (15 pts .) At time $\mathrm{t}=0$ (seconds) a particle is at the point $(1,2,3)$. It travels in a straight line to the point $(4,1,4)$. It has a speed of 2 units per second at $(1,2,3)$ and a constant acceleration of $\langle 3,-1,1\rangle$. Find the position vector $\mathbf{r}(\mathrm{t})$ of the particle.
