VCU	
MATH 307	
Multivariate Calculus	
R. Hammack	
T	
TEST 1	
September 13, 2013	
Name:	
Score:	
D'and'and Calmarks (allocation and the station	
Directions. Solve the following questions in the	space
work to receive full credit. This is a closed-book. cl	osed-
notes test. Calculators, computers, etc., are not	used.
	iato

1. (25 points) Let $\mathbf{u} = \langle 1, 1, 0 \rangle$ and $\mathbf{v} = \langle 0, -1, 1 \rangle$.

(a) |u| =

(b) Find a unit vector with the same direction as **u**.

(c) $\mathbf{u} \cdot \mathbf{v} =$

- (d) Find the angle θ between u and v.
- (e) Find a vector orthogonal to both **u** and **v**.

6. (10 pts.) Consider the following vectors: $\mathbf{u} = \langle 1, 3, -2 \rangle$, $\mathbf{v} = \langle 2, 2, 4 \rangle$, and $\mathbf{w} = \left\langle -1, -2, \frac{3}{2} \right\rangle$. State all pairs that are orthogonal to each other.

GOOD LUCK!

- **2.** (20 pts.) Consider the vectors $\mathbf{u} = \langle 1, 1, 3 \rangle$ and $\mathbf{v} = \langle -1, 2, 1 \rangle$ (in standard position).
 - (a) Find the area of the parallelogram formed by **u** and **v**.

(b) Find the equation of the plane that u and v lie in.

3. (15 pts.) Find the distance between the point P(5, 1, 4) and the plane whose equation is 3x - 2y + z = 6.

4. (15 pts.) Find the length of the curve $\mathbf{r}(t) = \left\langle \begin{array}{c} t, & 1, & \frac{2}{3} t^{3/2} \end{array} \right\rangle$ for $0 \leqslant t \leqslant 8$.

5. (15 pts.) At time t = 0 (seconds) a particle is at the point (1, 2, 3). It travels in a straight line to the point (4, 1, 4). It has a speed of 2 units per second at (1, 2, 3) and a constant acceleration of $\langle 3, -1, 1 \rangle$. Find the position vector $\mathbf{r}(t)$ of the particle.