| VCU                                                                                                                                      |                         |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| MATH 307                                                                                                                                 | 7                       |
| Multivariate Ca                                                                                                                          | LCULUS                  |
| R. Hammack                                                                                                                               |                         |
| Test 2                                                                                                                                   |                         |
|                                                                                                                                          |                         |
|                                                                                                                                          |                         |
| March 5, 2014                                                                                                                            |                         |
| Name:                                                                                                                                    |                         |
|                                                                                                                                          |                         |
| Score:                                                                                                                                   |                         |
| <b>Directions.</b> Answer the questions in the less noted otherwise, you must show an receive full credit. Put your final answer priate. | nd explain your work to |
| This is a closed-book, closed-notes test.<br>etc., are not used.                                                                         | Calculators, computers, |
|                                                                                                                                          |                         |

- **1.** (16 pts.) This question concerns the function  $f(x, y) = \frac{\sqrt{x}}{y-2}$ .
  - (a) Sketch the domain of this function on the coordinate axis below.

(b) Using the same coordinate axis, sketch the level curve for f(x, y) = 1.



- **2.** (16 pts.) Suppose  $f(x, y) = x^2 xy + y^2 y$ .
  - (a)  $\nabla f(x, y) =$
  - (b)  $\nabla f(1, -1) =$
  - (c) Given the unit vector  $\mathbf{u} = \left\langle \frac{1}{2}, \frac{\sqrt{3}}{2} \right\rangle$ , compute  $\mathsf{D}_{\mathbf{u}}\mathsf{f}(1, -1)$ .

(d) State a unit vector  ${\bf u}$  for which  $\mathsf{D}_{{\bf u}}\mathsf{f}(1,-1)$  is largest.

(e) State a unit vector **u** for which  $D_{\mathbf{u}}f(1,-1) = 0$ .

3. (20 pts.) Find the maximum and minimum values of  $x^2 + y^2$  subject to the constraint  $x^2 - 2x + y^2 - 4y = 0$ .

**4.** (20 pts.) Find the critical points of the function  $f(x, y) = xe^y - 5x$ . (Just find the critical points – no need to classify them as local max/min.) **5.** (12 pts.) Consider  $f(x, y) = y + \sin(xy + \pi)$ .

(a) 
$$\frac{\partial f}{\partial x} =$$

(b) 
$$\frac{\partial f}{\partial y} =$$

(c) 
$$\frac{\partial^2 f}{\partial y \partial x} =$$

(d) 
$$f_x(\frac{\pi}{8},2) =$$

**6.** (12 pts.) Evaluate the limit or explain why it does not exist.

$$\lim_{(\mathbf{x},\mathbf{y})\to(2,0)} \frac{\sqrt{2\mathbf{x}-\mathbf{y}}-2}{2\mathbf{x}-\mathbf{y}-4}$$