VCU

MATH 307

Multivariate Calculus

R. Hammack

Test 2

March 5, 2014

Name: \qquad

Score: \qquad

Directions. Answer the questions in the space provided. Unless noted otherwise, you must show and explain your work to receive full credit. Put your final answer in a box when appropriate.

This is a closed-book, closed-notes test. Calculators, computers, etc., are not used.

1. (16 pts.) This question concerns the function $f(x, y)=\frac{\sqrt{x}}{y-2}$.
(a) Sketch the domain of this function on the coordinate axis below.
(b) Using the same coordinate axis, sketch the level curve for $f(x, y)=1$.

2. (16 pts.) Suppose $f(x, y)=x^{2}-x y+y^{2}-y$.
(a) $\nabla f(x, y)=$
(b) $\nabla \mathrm{f}(1,-1)=$
(c) Given the unit vector $\mathbf{u}=\left\langle\frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle$, compute $D_{\mathbf{u}} f(1,-1)$.
(d) State a unit vector \mathbf{u} for which $\mathrm{D}_{\mathbf{u}} \mathrm{f}(1,-1)$ is largest.
(e) State a unit vector \mathbf{u} for which $\mathrm{D}_{\mathbf{u}} \mathrm{f}(1,-1)=0$.
3. (20 pts.) Find the maximum and minimum values of $x^{2}+y^{2}$ subject to the constraint $x^{2}-2 x+y^{2}-4 y=0$.
4. (20 pts.) Find the critical points of the function $f(x, y)=x e^{y}-5 x$. (Just find the critical points - no need to classify them as local max/min.)
5. (12 pts.) Consider $f(x, y)=y+\sin (x y+\pi)$.
(a) $\frac{\partial f}{\partial x}=$
(b) $\frac{\partial f}{\partial y}=$
(c) $\frac{\partial^{2} f}{\partial y \partial x}=$
(d) $f_{x}\left(\frac{\pi}{8}, 2\right)=$
6. (12 pts.) Evaluate the limit or explain why it does not exist.

$$
\lim _{(x, y) \rightarrow(2,0)} \frac{\sqrt{2 x-y}-2}{2 x-y-4}
$$

