12. Let R be the rectangle $0 \le x \le \ln 2$, $0 \le y \le \ln 2$.

Compute $\iint_{R} e^{x-y} dA$.

VCU
VCO
MATH 307
Multivariate Calculus
R. Hammack
Final Exam
December 10, 2013
N
Name:
Score:
Directions Calus the succtions in the successided
Unless noted otherwise, you must show your work to
receive full credit. This is a closed-book closed-potes
test. Calculators, computers, etc., are not used. Put a
your final answer in a box, where appropriate.

1. Compute the mass of a triangular plate bounded by the y-axis, the line y = x and the line y = 2 - x, if the plate's density at point (x, y) is $\delta(x, y) = x + 2y$.

2. Find all the local maxima, minima and saddle points of the function $f(x, y) = 4 - x^2 - xy - y^2 - 3x + 3y$.

3. Find the area of the part of the surface $z = 2\sqrt{x^2 + y^2}$ that lies between the planes z = 0 and z = 6.

4. Find the equation of the plane through (1,1,0), (-1,0,2) and (2,0,1).

5. In what direction is the derivative of the function $f(x,y) = x^2y + y^2x$ at P(3,2) equal to zero? Explain your reasoning.

6. Sketch the region of integration and integrate: $\int_{-1}^{0} \int_{0}^{\sqrt{1-y^2}} \frac{4}{1+x^2+y^2} dx \, dy$

7. Find the work done by **F** over the curve in the direction of increasing t. $\mathbf{F} = \langle xz, z, y \rangle$ and $\mathbf{r}(t) = \langle t, t^2, t \rangle, \ 0 \leq t \leq 1.$ 8. This problem concerns the vector field

$$F(\mathbf{x},\mathbf{y},z) = \left\langle \frac{1}{\mathbf{y}}, \frac{1}{z} - \frac{\mathbf{x}}{\mathbf{y}^2}, -\frac{\mathbf{y}}{z^2} \right\rangle.$$

(a) The field **F** is conservative. (You do not need to show this.) Find a potential function for **F**.

(b) Suppose C is the following curve:

$$\mathbf{r}(t) = \left\langle \frac{3 - \cos(\pi t)}{2}, 1 + t^2, 2^t \right\rangle$$
 for $0 \leq t \leq 1$.

Use your answer from part (a) above to compute $\int_{C} \frac{1}{y} dx + \left(\frac{1}{z} - \frac{x}{y^2}\right) dy - \frac{y}{z^2} dz.$ **9.** Using spherical coordinates, set up the triple integral that gives the volume of the solid bounded below by the xy-plane, on the sides by the sphere $\rho = 2$, and above by the cone $\phi = \frac{\pi}{3}$.

Once you have set up the integral, evaluate it.

$$\oint_C M dx + N dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy.$$

Let C be the curve (traversed counterclockwise) that contains the region R between the graphs of $y = x^2$ and $x = y^2$. Use Green's Theorem to find $\oint_C (xy + y^2)dx + (x - y)dy$.

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \nabla \times \mathbf{F} \cdot \mathbf{n} \, d\sigma.$$

Let C be the boundary of the triangle cut out from the plane x + y + z = 1 by the first octant, counterclockwise when viewed from above. Let $\mathbf{F}(x, y, z) = \langle y, xz, x^2 \rangle$.

Use Stokes' theorem to compute $\oint_C \mathbf{F} \cdot d\mathbf{r}$.