12. Let R be the rectangle $0 \leqslant x \leqslant \ln 2, \quad 0 \leqslant y \leqslant \ln 2$.

Compute $\iint_{R} e^{x-y} d A$.

VCU
 MATH 307
 Multivariate Calculus

R. Hammack

Final Exam

December 10, 2013

Name: \qquad

Score: \qquad
Directions. Solve the questions in the space provided. Unless noted otherwise, you must show your work to receive full credit. This is a closed-book, closed-notes test. Calculators, computers, etc., are not used. Put a your final answer in a box, where appropriate.

1. Compute the mass of a triangular plate bounded by the y-axis, the line $y=x$ and the line $y=2-x$, if the plate's density at point (x, y) is $\delta(x, y)=x+2 y$.
2. Find all the local maxima, minima and saddle points
of the function $f(x, y)=4-x^{2}-x y-y^{2}-3 x+3 y$.
3. Find the area of the part of the surface $z=2 \sqrt{x^{2}+y^{2}}$
that lies between the planes $z=0$ and $z=6$.
4. Find the equation of the plane through $(1,1,0)$,
$(-1,0,2)$ and $(2,0,1)$.
5. In what direction is the derivative of the function $f(x, y)=x^{2} y+y^{2} x$ at $P(3,2)$ equal to zero? Explain your reasoning.
6. Sketch the region of integration and integrate: $\int_{-1}^{0} \int_{0}^{\sqrt{1-y^{2}}} \frac{4}{1+x^{2}+y^{2}} d x d y$
7. Find the work done by \mathbf{F} over the curve in the direction of increasing t. $\mathbf{F}=\langle x z, z, y\rangle$ and $\mathbf{r}(\mathrm{t})=\left\langle\mathrm{t}, \mathrm{t}^{2}, \mathrm{t}\right\rangle, 0 \leqslant \mathrm{t} \leqslant 1$.
8. This problem concerns the vector field
$F(x, y, z)=\left\langle\frac{1}{y}, \frac{1}{z}-\frac{x}{y^{2}},-\frac{y}{z^{2}}\right\rangle$.
(a) The field \mathbf{F} is conservative. (You do not need to show this.) Find a potential function for \mathbf{F}.
(b) Suppose C is the following curve:
$\mathbf{r}(\mathrm{t})=\left\langle\frac{3-\cos (\pi \mathrm{t})}{2}, 1+\mathrm{t}^{2}, 2^{\mathrm{t}}\right\rangle$ for $0 \leqslant \mathrm{t} \leqslant 1$.
Use your answer from part (a) above to compute
$\int_{C} \frac{1}{y} d x+\left(\frac{1}{z}-\frac{x}{y^{2}}\right) d y-\frac{y}{z^{2}} d z$.
9. Using spherical coordinates, set up the triple integral that gives the volume of the solid bounded below by the $x y$-plane, on the sides by the sphere $\rho=2$, and above by the cone $\phi=\frac{\pi}{3}$.
Once you have set up the integral, evaluate it.
10. Recall that Green's theorem asserts that
$\oint_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$.
Let C be the curve (traversed counterclockwise) that contains the region R between the graphs of $y=x^{2}$ and $x=y^{2}$. Use Green's Theorem to find
$\oint_{C}\left(x y+y^{2}\right) d x+(x-y) d y$.
11. Recall that Stokes' theorem asserts that
$\oint_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\iint_{\mathrm{S}} \nabla \times \mathbf{F} \cdot \mathbf{n} \mathrm{d} \sigma$.
Let C be the boundary of the triangle cut out from the plane $x+y+z=1$ by the first octant, counterclockwise when viewed from above. Let $\mathbf{F}(x, y, z)=\left\langle y, x z, \quad x^{2}\right\rangle$.

Use Stokes' theorem to compute $\oint_{C} \mathbf{F} \cdot \mathrm{dr}$.

