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1. Introduction 

There is common agreement that traffic congestion is one of the biggest problems in 

every day modern life. Traffic congestion creates a number of costs.  There is a time cost, 

such as increased average travel time and unexpected delays; a physical cost, such as the 

cost of fuel and the depreciation of vehicles; and further environmental and social costs 

associated with noise and air pollution. The Texas Transportation Institute estimated 

congestion costs to be over $101 billion in 75 metropolitan areas during 2010 because of 

time delays (4.8 billion hours) and fuel consumed (1.9 billion extra gallons).1  

The standard remedy to traffic congestion is to ‘build our way out’ (Arnott and Small, 

1994, pg. 446).  This may literally mean to build more roads or enlarge existing ones.  It 

may also mean to build new capacity in the form of alternative forms of transportation or 

change the price of these alternatives modes of transport. These improvements, however, 

can induce behavioral changes which, although beneficial to the specific commuter, may 

have detrimental consequences for the efficiency of the system in particular, and for 

society as a whole. 

In this study we consider a model of road congestion in a situation where to reach 

their final destination, commuters must choose between two transportation modes: a 

congestible Road or an alternative public transit option such as the Metro.2 The travel 

cost on the road is increasing in the number of commuters who choose it, while the travel 

cost on the metro is decreasing in the number of its users. This last assumption 

incorporates the response of the service operator to a reduction in the metro traffic. More 

explicitly, while an individual commuter would prefer to commute in an empty wagon as 

opposed to a full one, the operator will face higher costs as the number of metro users 

decreases. These costs may be offset by lowering the frequency of operation or by 

increasing fares, to the detriment of the metro user.  

In this setup, we examine how changes to road capacity, to the number of commuters 

and to the metro pricing scheme influence the commuters’ route-choice behavior. In 

1 The data are from the 2011 Urban Mobility Report, Texas Transportation Institute. This cost excludes the 
environmental cost of pollutants produced by the extra fuel and the resulting health cost. Further, “in round 
numbers, the evidence suggests that each additional ten minutes in daily commuting time cuts involvement 
in community affairs by ten percent” (Putnam, 2000, pg.213).   
2 To be consistent with the literature, hereafter we will refer to transportation modes as ‘route’ choices. 
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particular, by changing the road capacity, we verify the realization of the Downs-

Thomson paradox. This paradox asserts that expanding the road capacity, as a remedy to 

traffic congestion, is not only ineffective but often counterproductive. As the road service 

improves and the commuters switch from the metro to the road, the metro may run less 

frequently and the worsened service may further induce additional commuters to switch, 

until the benefit of improved road capacity dissipates completely. Thus, an improvement 

in road capacity results in the system settling into an equilibrium far worse than before, as 

the travel time increases for commuters on both the road and the metro.  

“Traffic expands to meet the available road space” was posited as the “Iron Law of 

Congestion” by Downs (1962) and Thomson (1977). Although the paradox is well 

accepted in the theoretical literature, there is little empirical evidence to support it. In 

perhaps the only empirical work, Mogridge (1990) documents the case study of London 

in the book "Travel in towns: jam yesterday, jam today and jam tomorrow?" He found 

that congestion in central London can be attributed to the increase in road capacity over 

time and the resulting decline in mass transit traffic.3 Horowitz (1984), however, notes 

that empirical investigations of route choice behavior and the validity of the equilibrium 

assumptions in real networks cannot be resolved using field data. The variety and the 

complexity of ways in which current travel decisions may depend on past network 

performance, and the complete lack of empirical information about the form of this 

dependence, renders the usefulness of ‘natural experiments’ in real networks doubtful. 

Furthermore, the documented difference between the measured traffic volumes and those 

computed with equilibrium models (as large as 30-50%) could be a result of model 

misspecification rather than equilibrium failure. Laboratory experiments, in contrast, 

provide a controlled setting to examine the behavioral relevance of equilibrium 

prediction, and to "bench-test" competing public policy options.  

The objective of our paper is to provide experimental evidence for the Downs-

Thomson paradox. This is a well-known result in the transportation literature, and Arnott 

and Small attribute the genesis of this paradox to the fact that “new capacity generates 

more than its own demand” (1994, pg. 450). More explicitly, each metro user creates 

3 This support for the paradox played a crucial role in the implementation of an urban pricing scheme in 
London in the subsequent years. 
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external benefits for others, whereas each road user imposes an external cost on the other 

commuters. Furthermore, the negative externality is continuous, as the travel cost 

increases at a constant rate with the number of road users. On the other hand, in the case 

of the metro, the travel cost increases sharply and in a discontinuous fashion as the 

number of metro users decreases below a certain level. Therefore, the positive externality  

generated by the metro users comes in discrete steps, similar to a step-level public goods 

game. The equilibrium implies more road users than in the Pareto efficient outcome; and 

as the number of road users increases, the benefits inherent in the metro service are 

thwarted while the increased costs are shared by all commuters. Thus, the Downs-

Thomson paradox poses an important empirical question in the congestion literature. But 

even abstracting from its application to traffic, it is of interest to behavioral game 

theorists. The paradox is an example of a theoretical result that stems from equilibrium 

behavior, but its behavioral plausibility remains unclear.  

We seek to examine the extent to which subjects internalize the social cost their 

decisions impose on others, in a full feedback neutral environment. Our results provide 

insight into the unintended and undesired behavioral changes induced by improvements 

to a network, which can be of practical importance to providers and managers of any 

network - information, material or personnel based. 

After establishing the Downs-Thomson Paradox, we explore two additional facets: 

the impact of alternative pricing policies for the metro service and the impact of 

population size. Most traffic studies assume constant cost along the uncongested route 

(metro). We compare the constant cost structure with an average cost structure to 

examine the extent to which the latter is responsible for the Downs-Thomson paradox. 

Our assumption of average cost pricing structure for the metro is a close, and perhaps 

more realistic, approximation of the “increasing returns from added flow,” traditionally 

featured in the Downs-Thomson paradox. We also vary the commuter population size to 

study whether, and to what extent, coordination problems become more pronounced in 

case of a larger population. To the best of our knowledge, this is the first study that 

accounts for the impact of population size in the context of entry games. 

We report the results from a series of 14 experimental sessions. We confirm that 

increased road capacity diverts commuters to the congestible road, and this worsens the 
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metro service in such a way that the new equilibrium occurs at a higher level of road 

congestion than before the increase in capacity. We also confirm that the size of the 

population matters, in the sense that coordination on the equilibrium route choice realizes 

more often with a smaller commuter population size. Finally, we find that coordination 

on the equilibrium route choice occurs more often when the constant cost pricing scheme 

is adopted.  

The paper proceeds as follows. In Section 2 we describe how our study relates to 

some of the existing literature on both route choice and market entry/coordination games. 

Section 3 presents the basic model of route choice which is used to parameterize the 

experiment. The experimental design and procedures are described in Section 4, and the 

results are contained in Section 5. Section 6 concludes. 

  

2. Literature Review 

Several experimental papers have examined route choice behavior, per se. Selten et 

al. (2007) conduct a route choice experiment where subjects choose between two 

congestible routes.4  They find that, despite persistent fluctuations, the mean number of 

travelers along each route is close to equilibrium. Helbing (2004) modifies Selten et al.’s 

setup to find that the volatility in subjects’ decisions can be reduced by providing either 

user-specific route recommendations, or information on the potential payoffs from 

alternate route choices. Chmura and Pitz (2004a and 2004b) consider a game where only 

the travelers along the least congestible route earn positive payoffs, while all others earn 

nothing. Similar to Selten et al., they find that overall route stickiness yields higher 

aggregate payoffs. Gabuthy et al. (2006) and Anderson et al. (2008) use a traffic network 

with two routes to examine whether a pricing mechanism or toll could reduce congestion 

to the socially optimal level. Schneider and Weimann (2004), Rapoport et al. (2004) and 

Ziegelmeyer et al. (2008) report laboratory experiments on bottleneck models where 

subjects choose their departure time along a single route. In particular, the second study 

finds that the subjects’ ability to coordinate is not affected by the size of the population.  

4 In our experiment, subjects choose between a road which is assumed to be a congestible route, and the 
metro which is assumed to be a non-congestible route. 
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In this study, we focus on the Downs-Thomson paradox, but this paradox is just one 

example of a situation in which expanding the capacity of a transportation system does 

not necessarily improve its performance. Other well-known traffic paradoxes are the 

Pigou-Knight-Downs paradox and the Braess paradox. The first paradox considers the 

case where improving the capacity along the congestible route attracts more users and 

leads to no reduction in travel cost. The Braess Paradox is similar to the Downs-Thomson 

paradox in the sense that attempt at improving the route capacity - adding a costless link 

between two alternative routes - yields not only dissipated benefits from improvement, 

but can actually increase the travel cost for all users (see, Arnott and Small, 1994 for 

more details). Morgan et al. (2009) consider network changes based on the latter two 

paradoxes, and similar to our study, find adjustments in traffic flows commensurate with 

attaining equilibrium (rather than social efficiency). Rapoport et al. (2006, 2008, 2009) 

also examine the Braess paradox under different information and cost conditions. 

To the best of our knowledge, there is only one other study on the Downs-Thomson 

paradox. Denant-Boèmont and Hammiche (2010) examine a modified version of the 

Downs-Thomson paradox in which commuters choose between a road and a public 

transit option, after the operator chooses the capacity of the public transit system. They 

do find evidence for the Downs-Thomson paradox; but because in the experiment, the 

capacity of the public transit system is endogenous, it is difficult to isolate the impact of 

changing road capacity on commuter route choices versus varying transit capacity. 

Furthermore, the assumption that the operator determines the transit capacity at the start 

of each period may not reflect the reality of the public transit system operations. In the 

short run, it is likely that the public transit system operators are committed to a given 

capacity which cannot be easily adjusted. Therefore, in our experiment we assume that 

the public transit capacity is exogenously determined, and is fixed within a treatment. We 

then focus on the commuters’ choices between a road and a metro.  

We can also draw parallels between a market entry game and a coordination game to 

the route choice problem studied in this paper. In market entry games, players have the 

choice either to enter a market or to stay out. The payoff from entering the market is 

decreasing in the number of entrants, and the payoff from staying out is a constant 

opportunity cost. In our setup, players have to choose one of the two routes (i.e., the 
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choice of staying out is not an option), and while the payoff from choosing the road is 

decreasing in the number of users, the payoff from choosing the metro actually increases 

with the number of users. Thus, unlike market entry games, entry along either route 

generates a strictly positive or a strictly negative externality. Furthermore, in coordination 

games, players have to coordinate on an equilibrium by choosing an appropriate strategy. 

In our route choice game, on the other hand, players have to sort themselves between the 

two routes in a coordinated fashion, so that in equilibrium individuals' payoffs are 

equalized. Many such equilibria are feasible. Finally, the specific cost function used for 

the metro brings to mind coordination games in which individuals' payoffs from choosing 

an action are positive only if a critical mass of players chooses that action. In the context 

of our route choice game, we will also test how the size of the population may affect 

coordination along the two routes. 

 

3. Theoretical model and testable hypotheses 

Basic Setup 

 Consider a group of n commuters who must simultaneously and independently 

choose between two routes – a Road and the Metro. The road represents private 

transportation where transit time is an increasing function of congestion. Therefore, travel 

cost on the congestible road is given by  

 

,RT a bx= +                                                  (1) 

where x is the number of commuters who choose the road, and a and b are positive 

parameters. The fixed parameter a represents the minimum time it takes to get to the 

destination using the road, in the absence of any congestion. The congestion parameter b 

measures the marginal effect on travel time generated by each additional road user.5  

The metro, on the other hand, represents public transportation where travel cost is 

inversely related to the number of commuters. In particular, we assume that there is a 

5 Assuming a linear cost structure is common in the literature (see Selten et al. 2007; Morgan et al. 2009; 
Rapoport et al. 2005). Steinberg and Zangwill (1983) note that linear cost approximation is supported by 
empirical studies on transportation networks. 
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discrete increase in travel cost of the metro as the number of metro users decreases 

beyond a certain threshold level, k: 

1

2

 t   if  
t   if + 1, M

x k
T

x k
≤

=  ≥
     (2) 

with 1 2t t< . That is, travel cost of the metro is low 1( )t=  when no more than k  

commuters choose the road, and the remaining ( )n k−  choose the metro; and increases to 

2t as the road becomes more congested and fewer commuters chose the metro. This 

“average cost” pricing structure effectively captures the situation in which shifts away 

from the public transportation mode causes disinvestment in the mode because the 

service operator either reduces the frequency of service or raises fares to cover costs.6   

In equilibrium, commuters will sort themselves between the two alternatives until 

travel cost is equalized along both routes (otherwise at least one commuter could 

decrease her travel cost by switching routes). Thus, in equilibrium we have M RT T=  and 

solving for *x , the equilibrium number of road users, we get  

1 1

2 2

     if  
*

    if  1. 

t a t a k
b bx

t a t a k
b b

− − ≤=  − − ≥ +


                                           (3) 

Since 1 2t t< , it follows that the equilibrium in which fewer number of commuters choose 

the road ( *x k≤ ) Pareto dominates the equilibrium in which the number of road users 

exceeds 1k + .7  

6 As anyone who has stood throughout a long metro ride can attest, there is a point after which the cost of 
metro increases with greater use intensity. In our analysis, we do not consider this end of the cost spectrum. 
7 Notice that x* is not the efficient number of road users. In fact, the equilibrium number of road users is 
exactly double the efficient or socially optimal level. Suppose, for example, that  ( )x k≤  commuters 
choose the road and the remaining ( )n x−  choose the metro, then minimization of the aggregate travel cost 

of the entire commuter population: 1( ) ( )x a bx n x t+ + −  leads to 
*

** 1 1
1 2 2

t a xx
b

−
= =  commuters choosing the road. 

If, on the other hand,  ( 1)x k≥ +  commuters choose the road, then the optimal number of road users is 
*

** 2 2
2 2 2

t a
x

b
x−

= = . The result that the efficient number of road users is half the equilibrium rate is consistent 

with the notion that when users individually try to minimize their personal cost, they fail to internalize the 
social cost their decisions impose on others. However, the efficient outcome does not constitute an 
equilibrium because there is always an incentive for any individual commuter to switch to the road.  
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Furthermore, given that any combination of *x  road users and *n x−  metro users 

constitutes an equilibrium, there exists *
!

*!( *)!
n
x

nC
x n x

=
−

 such pure strategy equilibrium 

combinations.8 Also, while all pure strategy equilibria predict the same aggregate number 

of commuters on each route, they do not predict the route chosen by any given commuter.  

In addition to pure strategy equilibria, we also consider symmetric mixed strategy 

equilibrium. Suppose the probability that s other commuters choose road is p, then 

commuter i’s expected payoff from choosing the road is  

( )( ) ( )
n-1

( 1 )

s=0

1!(1 ) 1 ,
! 1 !

s n s np p a b s
s n s

− − −
− + +

− −∑                                      (4) 

while the expected payoff from choosing the metro is  

( ) ( )
k n-1

( 1 ) ( 1 )
1 2

s=0 s=k+1

1! 1!(1 ) (1 ) .
! 1 ! ! 1 !

s n s s n sn np p t p p t
s n s s n s

− − − −− −
− × × + − × ×

− − − −∑ ∑        (5) 

Equating the two expected payoffs above, we can solve for *p , the equilibrium 

probability of choosing the road. This equilibrium determination entails that if all 

commuters choose randomly, they will choose the road with the same probability *p ; 

and the standard deviation of the number of commuters on the road is *(1 *) 0np p− > . 

Finally, there are also asymmetric mixed strategy equilibria in which some 

commuters randomize between the two routes, while others stick to a particular route. 

With n commuters and 2 choices, this yields 2n  possibilities. Each of these cases 

constitutes an equilibrium except for the case in which no commuter chooses the road. 

Thus, there are 2 1n −  possible asymmetric mixed strategy equilibria. It is important to 

note that despite their multiplicity, these equilibria afford little heterogeneity to 

commuters. This is because in equilibrium, all commuters who randomize between the 

road and the metro have to do so with the same probability (Morgan et al. 2009).  

 We use this basic setup to examine how changes to the road capacity, commuter 

population size and the metro pricing scheme influence the commuters’ route-choice 

8 In addition, there are 
* 1

!
( * 1)!( * 1)!

n
x

nC
x n x− =

− − +
 weak pure strategy equilibria in which x*-1 commuters 

choose the road and n - x*+1 commuters choose the metro. 
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behavior. We begin by providing the motivation for each variation and then detail the 

parameter specification used in our laboratory setting. 

1. Improvement to road capacity. The standard policy reaction to road congestion is to 

“build our way out” (Arnott and Small, 1994). However, increased road capacity can 

divert commuters to the congestible road and this diversion may worsen the metro service 

in such a way that a new equilibrium can only occur where the congestion is worse than 

before. This swing in the number of commuters towards the improved road underlies the 

Downs-Thomson paradox, and forms the central question of our investigation.  

2. Change in the size of the commuter population, n. As stated in Section 2, there are 

strong parallels between coordination games and our route choice problem. Past research 

on coordination games suggests that the number of players is a crucial variable, and 

coordination steadily gets worse with larger groups (see for example, Knez and Camerer 

1994, Goeree and Holt 2005a, VanHuyck et al. 2007). The primary explanation for this 

trend is the increase in the ‘cognitive load’ on the players as their beliefs about others’ 

behavior becomes increasingly ambiguous with the introduction of additional players. 

We examine the extent to which strategic uncertainty, that exists whenever a player lacks 

perfect foresight about what other players are going to do, influences his/her route choice 

behavior.9 

3. Pricing Structure of the Metro. In the basic setup we use a step cost function for the 

metro. This allows us to capture the strong economies of scale realized as the number of 

metro users increase. These economies may arise due to two reasons: savings for the 

operator when the service is more fully utilized and savings for the users when the 

frequency of service is increased. By employing the pricing structure as an experimental 

parameter, we provide an improvement to most of the previous traffic studies that assume 

a constant pricing schedule, i.e. the alternative to the congested road is always a route 

with a fixed travel cost (see, for example, Selten et al. (2007), Morgan et al. (2009), 

Rapoport et al., 2009).  

 

9 The above cited studies examine the impact of population size in minimum-effort coordination games. 
Ziegelmeyer et al. (2008) is the only study on traffic congestion to consider number of commuters as an 
experimental parameter. However, they examine the impact of population size in a bottleneck model where 
commuters have to choose their departure time in order to reach a common destination. 
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Experimental Parameters and Testable Hypotheses 

Throughout the remaining text, we use the following terminology to indicate our four 

experimental treatments: ACxx/CCxx refers to average cost/constant cost pricing 

structures with xx depicting the number of subjects per session (xx = 16 or 10). AC'16 

refers to a treatment with modified average cost pricing and 16 subjects. 

 

AC16: We use the following parameters to characterize the route-choice game in our 

basic setup: 

n = 16, a = 100, b = 12.5, t1= 150, t2 = 225 and k = 7. 

Equalization of travel costs along the road and the metro results in an equilibrium number 

of road users at two levels: *
1 4x = , with travel cost equal to 150, and *

2 10x = , with travel 

cost equal to 225. In the symmetric mixed strategy equilibrium, each commuter chooses 

the road with probability 0.2, the expected travel cost is 150.34 and the expected number 

of road users is 3.2 (with standard deviation of 1.6).  

 

AC’16: Improvement in the road service is parameterized by changing a and b to 40.83 

and 14.17, respectively:10 

n = 16, a =  40.83, b = 14.17, t1= 150, t2 = 225 and k = 7. 

Equalization of travel costs along the two routes results in an increase in the equilibrium 

number of road users to * 13improvedx = , and a travel cost equal to 225. In the symmetric 

mixed strategy equilibrium, each commuter chooses the road with probability 0.79. The 

expected travel cost is 225 and the expected number of road users is 12.64 (with standard 

deviation of 1.63). 

Figure 1 represents the situations detailed in AC16 and AC’16. The improvement in 

the road capacity is depicted by the downward shift in the road cost curve. This 

improvement reduces the number of pure strategy equilibria from two to one. More 

specifically, the Pareto dominated equilibrium of AC16 becomes the unique equilibrium 

10 Although the congestion parameter, b, has increased, this increase is marginal compared to the large drop 
in the fixed cost parameter, a. We selected these parameter values so that the equilibrium number of 
commuters on each route is an integer. For our parameter specification, this change entails improved road 
service for all commuters, as long as the total number of commuters does not exceeds 37. 
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of AC’16. Our first hypothesis pertains to the realization of this Downs-Thomson 

Paradox and can be stated as follows: 

DT Hypothesis – (comparison of AC16 and AC’16) Congestion, measured in terms of 

number of road users and total travel cost, increases when the road capacity is 

increased.  

 
                             Figure 1. Improved road capacity 

 

AC10. To examine the effect of population size on the commuter route-choice behavior 

we reduce n from 16 to10. The remaining parameters remain the same as in AC16: 

n=10, a = 100, b = 12.5, t1 = 150, t2 = 225 and k = 7. 

Again, equalization of travel costs along the road and the metro will result in equilibrium 

number of road users at two levels: *
1 4x =  and *

2 10x = . There are two symmetric mixed 

strategy equilibria. In one, each commuter chooses the road with probability 0.33, the 

expected travel cost is 150.07, and expected number of road users is 3.34 (with standard 

deviation of 1.49). In the second mixed strategy equilibrium each commuter chooses the 

road with probability 0.95, the expected travel cost is 218.98, and the expected number of 

road users is 9.46 (with standard deviation of 0.71) 

  Note that in both AC16 and AC10, the equilibrium number of road users takes two 

values, *
1 4x = and *

2 10x = . This means that in both cases there are two mutually 

consistent ways in which commuters can sort themselves – one more costly than the 

   t1 

  t2 

   *
1x              k   k+1         *

2x            *
Improvedx  No. of road users 

Travel Cost 

Travel Cost 
on the Metro 

Travel Cost 
on the Road 

Travel Cost on the 
Improved Road 
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other. The prior literature suggests that this duality in equilibrium prediction gives rise to 

strategic uncertainty, even though the environment, the feasible strategies and the 

equilibrium conventions are common knowledge. However, in case of AC10, *
2 10x =  is 

much harder to realize because it entails that the entire population must coordinate 

simultaneously on the same, more costly, route. This makes *
1 4x =  the focal equilibrium 

in AC10, while both equilibria are equally viable in AC16. Our next hypothesis examines 

the impact of a decrease in the size of the commuter population on coordination behavior 

in general, and on the selection of the Pareto dominant equilibrium in particular, and can 

be stated as follows:  

Size Hypothesis – (comparison of AC16 and AC10) There is greater coordination on 

the equilibrium route choice when the size of the commuter population is relatively small. 

Congestion, as measured by the number of road users and total travel cost, may 

decrease. 

 

CC10: To examine the effect of different pricing structures for the metro on the 

commuter route-choice behavior we consider the same parameters as in AC10, but 

change TM to the uniform rate of ( 1 2t t+ )/2 = 180: 

n=10, a = 100, b = 12.5, TM= 180, and k = 7. 

Equalization of travel costs along the road and the metro will result in a unique 

equilibrium number of road users, * 6.x =  In the symmetric mixed strategy equilibrium, 

each commuter chooses the road with probability 0.6, the expected travel cost is 180 and 

the expected number of road users is 6 (with standard deviation of 1.55). 

Figure 2 represents the impact of this change in the metro pricing structure on the 

commuters' equilibrium coordination behavior. Equalization of travel costs along the two 

routes implies that the average cost pricing structure, approximated by a step cost 

function, yields two possible equilibria; while the constant cost pricing structure yields 

only one equilibrium. Accordingly, we test whether the existence of a second, though 

dominated, equilibrium makes coordination in route choice more difficult. Also, and 

perhaps more importantly from a policy point of view, we seek support for the conjecture 

that average cost pricing of the metro reduces road congestion. The impact of the pricing 
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structure on both coordination and congestion generates our last hypothesis which can be 

stated as follows: 

Price Hypothesis – (comparison of AC10 and CC10) There is greater coordination on 

the equilibrium route choice when the uniform pricing structure is adopted on the 

alternative (metro) route. However, congestion, as measured by the number of road users 

and total travel cost, is higher. 

 

 
Figure 2. Average cost vs. constant cost pricing of the metro. 

 

Table 1 summarizes the parameters used in the four cases and the corresponding 

pure-strategy equilibrium predictions. We use this as a basis for our experimental design, 

which is detailed in the next section. 

 

  

   t1 

  t2 

 *
1x                *

Constantx    k    k+1       *
2x           No. of road users 

Travel Cost 

Cost of the Metro 

Cost of the Road 

Constant Cost of 
the Metro tconstant    

14 

 



AC16 AC’16 

n = 16      TR = 100 + 12.5 x n = 16     TR = 40.83 + 14.17 x 

TM = t1 (150) or  t2 (225) TM = t1 (150) or  t2 (225) 

Equilibrium road users: 4 or 10 

Equilibrium travel cost: 150 or 225 

 

Equilibrium road users: 13 

Equilibrium travel cost: 225 

 

AC10 CC10 

n = 10     TR = 100 + 12.5 x n = 10     TR = 100 + 12.5 x 

TM = t1 (150) or  t2 (225) TM = (t1 + t2)/2 = 180 

Equilibrium road users: 4 or 10 

Equilibrium travel cost: 150 or 225 

 

Equilibrium road users: 6 

Equilibrium travel cost: 180 

 

      Table 1. Pure strategy equilibrium prediction for all cases 

 

4. Experimental Design and Procedures  

The experiment consists of 14 sessions conducted at Virginia Commonwealth 

University in 2008 using the program z-Tree (Fischbacher, 2007). A total of 176 subjects 

recruited from introductory economics and business classes participated in the experiment. 

All subjects were inexperienced in this decision-making environment and no one 

participated in more than one session. Upon arrival, subjects were randomly seated at 

computer terminals and given a set of instructions (included in the Appendix), which 

were later read aloud by the experimenter. Throughout the session, no communication 

between subjects was permitted and all choices and information were transmitted through 

computer terminals. At the end of the session, subjects received their total profit from the 

experiment, and were paid privately and in cash. Earnings were converted from 

experimental dollars to U.S. dollars using a pre-determined conversion rate. The sessions 
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usually lasted about 40-45 minutes and the average earnings were approximately $21, 

excluding the $3 show-up fee. 

In all sessions, 10 or 16 subjects made route-choice decisions over 40 periods. A 

typical period proceeded as follows: each subject (assigned the role of a commuter) 

travelled to some destination D, by choosing one of two routes, labeled A and B.11 Travel 

along both routes is costly and depends on the number of other commuters choosing the 

same route. We assume that travel costs are common knowledge and, therefore, display 

them on the subjects’ computer screen every period. Upon reaching destination D, 

subjects receive 275 experimental dollars minus their travel cost. At the end of each 

period, subjects receive a summary of the number of commuters on each route, their 

period payoff and their total payoff so far. We provide subjects with complete 

information to increase their opportunity to learn about others’ strategies, and also to 

provide them with sufficient information to calculate the optimal route choice ex-post.12 

Table 2 summarizes our experimental design. In accordance with the cases detailed in 

the previous section, we vary three experimental parameters: road capacity (DT 

treatment), pricing structure of the metro (pricing treatment), and the size of commuter 

population (size treatment). To examine the impact of each variation, all experimental 

sessions consisted of two sequences of 20 periods each, with each sequence featuring a 

specific case paradigm. Having the same set of subjects make decisions for two different 

cases controls for subject variability and allow the effect of change to be assessed by a 

within session comparison. However, experience in the first 20 periods can affect the 

11 The instructions and decision screens refer to choices as Route A and Route B. We use this transportation 
terminology to help subjects more readily understand the decision they face. However, to prevent personal 
biases from influencing the results, we do not make any reference to the ‘public transit’ option. The 
terminology is held constant across all sessions, so framing cannot affect the conclusions regarding 
comparative static hypotheses that are the focus of this research. 
12 Most experiments on traffic (Helbing 2004, Ziegelmeyer et al. 2008, Rapoport et al. 2009) and market 
entry games (Sundali et al. 1995), with the notable exception of Morgan et al. (2009), provide subjects with 
the precise description of the associated costs. Duality of equilibrium prediction in our setup creates 
strategic uncertainty and Helbing (2004) conjecture that improved information could facilitate better 
“adaptation performance.” Therefore, to create conditions most conducive to coordination and to be 
consistent with the literature, we provide subjects with the entire cost structure. It is important to bear in 
mind that even with complete information of the underlying cost, coordination of 10 to 16 subjects on a 
particular strategy is by no means trivial. Nevertheless, as a robustness check, we did run two additional 
sessions where subjects were not informed about the entire cost schedule and only knew the minimum and 
maximum possible travel cost for Route A. There is no statistical difference between the complete and 
incomplete information treatments (see also footnote 13). Details for the incomplete information sessions 
are available from the authors upon request. 
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subjects' behavior in the following 20 periods. Therefore, we switched the sequence order 

to measure and control for such experience effects. Consider, for example, sessions 1-6 

that test the DT hypothesis. The first sequence in sessions 1-3 featured AC16 and was 

followed by AC’16; sessions 4-6 reversed the ordering and began with AC’16. A similar 

design is used in sessions 7-14 that test the price hypothesis. Finally, we test the size 

hypothesis using across session comparisons with two different population sizes, n = 16 

and n = 10. Sessions 1-6 employed 16 subjects each. For the remaining sessions, we 

employed a cohort of 20 subjects and simultaneously ran 2 sessions of 10 subjects each. 

There was no interaction across the two groups in the cohort and subjects remained 

matched with the same participants for the entire length of the experiment.  

 

DT Treatment 

Within session comparison of AC16 and AC’16: 6 sessions. 

Sessions 1-3: 20 periods of AC16 followed by 20 periods of AC’16. 

Sessions 4-6: Sequencing reversed. 

Total number of subjects: 96 

Number of subjects per session: 16 

Price Treatment 

Within session comparison of AC10 and CC10: 8 sessions. 

Sessions 7-10: 20 periods of AC10 followed by 20 periods of CC10. 

Sessions 11-14: Sequencing reversed. 

Total number of subjects: 80 

Number of subjects per session: 10 

Size treatment 

Across session comparison of AC16 and AC10: 7 sessions 

Sessions 1-3: First 20 periods of AC16. No. of subjects per session: 16 

Sessions 7-10: First 20 periods of AC10. No. of subjects per session: 10 

Total number of subjects: 88 

Table 2. Experimental design 

 

5. Results 

We have a panel dataset of route choice decisions made by 176 subjects over 40 

periods across 14 sessions and under four case paradigms. Table 3 reports the summary 

statistics for each session. We use two measures of performance: aggregate route choice 
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(or, the average number of road users) and the average travel cost. In all four cases, the 

aggregate choice behavior moves in accordance to the theoretical prediction. However, 

there are persistent and substantial fluctuations, as is evident in Figure 3. In the formal 

statistical analysis discussed below we begin by focusing on the equilibrium comparison 

and the individual choice behavior. Next, we provide formal support for all of the 

comparative statics hypotheses. Finally, we show that the Quantal Response Equilibrium 

provides an excellent fit of the aggregate route choice behavior. To account for the 

treatment switchover effect and the possible hysteresis, we restrict our analysis to the last 

15 periods of each sequence run. 

 

5.1 Equilibrium Comparison 

The theoretical model predicts the equilibrium number of road users (or equivalently, 

the travel cost on each route). In AC16 and AC10, of the two Nash equilibria, the Pareto 

dominant equilibrium entails that 4 commuters use the road. The left half of Table 3 

shows that there are systematically more road users than the Pareto dominant equilibrium 

in both of these cases. The number of road users is higher than predicted in all 6 sessions 

featuring AC16 and in 6 out of the 8 sessions featuring AC10. Consequently, 

conservative non-parametric tests based on one observation from each of these 

statistically independent sessions support the alternative hypothesis that there are 

significant differences between observed and equilibrium route choice behavior (two-

sided Wilcoxon sign-rank test:  AC16: n = 6, z = 2.21, p-value = 0.03; AC10: n = 8, z = 

1.76, p-value = 0.08). The analysis of average travel cost yields similar results. Thus, in 

both AC16 and AC10 there is greater traffic flow along the congestible road, which 

results in higher average travel cost for all commuters. It is possible that the presence of 

the additional (albeit Pareto dominated) equilibrium of 10 road users affects behavior. 

However, in Table 3, we find that the average number of road users is closer to the Pareto 

dominant equilibrium in all sessions of AC10 (4.15) and in all but one session of AC16 

(6.13). Therefore, in the rest of the analysis of AC16 and AC10 treatments, we focus only 

on the Pareto dominant equilibrium of 4 road users.  

The right half of Table 3 shows the corresponding data for AC’16 and CC10. Recall 

that in both cases, the equilibrium is unique and predicts a larger number of road users 

18 

 



(13 in AC’16 and 6 in CC10). As before, we find that the observed number of road users 

is significantly different from the predicted level. However, unlike the previous two 

cases, now there are systematically fewer road users and, accordingly, the average travel 

cost is lower than predicted (sign-rank test: AC’16: n = 6, z = -2.21, p-value = 0.03; 

CC10: n = 8, z = -1.90, p-value = 0.06).13  

In summary, the observed number of road users is higher than predicted when the 

Pareto dominant equilibrium predicts few users (AC16 and AC10), and lower than 

predicted when equilibrium predicts many users (AC'16 and CC10). The deviation from 

equilibrium in the direction of a more even allocation of commuters along the two routes 

is also noted by Morgan et al. (2009). These results are also consistent with the prior 

experimental literature on market entry games. In his review, Camerer (2003) notes that 

there is a slight tendency towards over-entry when equilibrium predicts few entrants and 

under-entry when equilibrium predicts many entrants. 

A key feature of the equilibrium is the equalization of travel cost along the two 

routes. Table 3 reports the average difference in travel cost between the road and the 

metro. Since the number of commuters on the congestible road is systematically higher 

than predicted in AC16 and AC10, the road is significantly more costly than the metro in 

these cases; the opposite holds true for AC’16 and CC10 where the road is the cheaper 

alternative.14 Of course, this rejection of the "equalized travel cost hypothesis" in all four 

cases is consistent with the previous observation that the number of users along each 

route is systematically different from predicted. 

  

13 In reference to footnote 12, these results are confirmed even in the no information treatment. When 
subjects did not have complete information about the underlying cost structure for Route A, the observed 
number of road users and the total travel were significantly higher than the Pareto dominant equilibrium in 
AC16 (6.34 and 176.52, respectively) and significantly lower in AC’16 (10.58 and 201.91, respectively).  
14 Two-sided Wilcoxon sign-rank test – for AC16:  n= 6, z = 1.99, p-value = 0.05; AC’16:  n= 6, z = -2.20, 
p-value = 0.03; AC10: n = 8, z = 1.83, p-value = 0.07; CC10: n = 8, z = -2.52, p-value = 0.01. 
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Case # - 
Session # 

Average 
no. of 
road 
users 

Average 
travel 
cost 

Diff. in 
cost 

(road-
metro) 

Case # - 
Session # 

Average 
no. of 
road 
users 

Average 
travel 
cost 

Diff. in 
cost 

(road-
metro) 

AC16 - 1 5.67 170.83 20.83 AC’16 - 1 10.87 194.81 -25.19 

AC16 - 2 5.87 173.33 8.33 AC’16 - 2 11.2 199.53 -25.47 

AC16 - 3 6 175 15 AC’16 - 3 12.27 214.65 -10.35 

AC16 - 4 5.67 170.83 10.83 AC’16 - 4 9.47 174.97 -30.03 

AC16 - 5 8.6 207.5 -7.5 AC’16 - 5 11.33 201.42 -18.58 

AC16 - 6 5 162.5 12.5 AC’16 - 6 10.2 185.36 -29.64 

Overall 
Average 

6.13  176.67  10 Overall 
Average 

10.89  195.13  -23.21 

Theoretical 
Prediction 

4 / 10 150/225 0 Theoretical 
Prediction 

13 225 0 

AC10 - 7 4.13 151.67 1.67 CC10 - 7 5.73 171.67 -8.33 

AC10 - 8 4.33 154.17 4.17 CC10- 8 3.87 148.33 -31.67 

AC10 - 9 3.8 147.5 -2.5 CC10 - 9 4.8 160 -20 

AC10 – 10 4.27 153.33 3.33 CC10 - 10 4.53 156.67 -23.33 

AC10 - 11 4.4 155 5 CC10 – 11 5.27 165.83 -14.17 

AC10 - 12 4 150 0 CC10 – 12 4.8 160 -20 

AC10 – 13 4.07 150.83 0.83 CC10 – 13 6.33 179.17 -0.83 

AC10 - 14 4.2 152.5 2.5 CC10 - 14 6.27 178.33 -1.67 

Overall 
Average 

4.15  151.88  1.88 Overall 
Average 

5.2  165  -15 

Theoretical 
Prediction 

4 / 10 150 / 225 0 Theoretical 
Prediction 

6 180 0 

Table 3. Summary statistics 

 

The above non-parametric tests are valuable because they require a minimal number 

of statistical assumptions and are based only on statistically independent observations. 

However, they cannot control for factors such as time trend and subject heterogeneity that 

could influence the results (see Figure 3). Therefore, we also conduct multivariate 

regression models with subject level random effects. These regressions include a control 
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for time trend, as well as session and sequence dummies to capture the fixed effects. The 

regression equation for case i is 

* (1 / ) ,i
t tx x t d sα β δ λ ε− = + + + +                      (6) 

where *i
tx x−  is the difference between the observed number of road users in period t 

and the equilibrium prediction for case i, d is the sequence dummy, s is the vector of 

session dummies, and ε  is the composite error term. The regression results largely 

corroborate the conclusions from the non-parametric tests in the case of a large commuter 

population. In particular, the number of road users is significantly different from the 

prediction. It is higher than predicted in AC16 (t-statistic = 10.64, p-value<0.01) and 

lower than predicted in AC’16 (t-statistic = -7.95, p-value<0.01). However, when the 

commuter population is 10, the parametric results differ in the sense that the observed 

number of road users is marginally lower than predicted in AC10 (t-statistic = -2.09, p-

value=0.04) and it is not statistically different in CC10 (t-statistic = -0.62, p-

value=0.53).15   

A striking feature of our data is the persistent variability in traffic flows. Even in the 

long run, route choices display considerable variability resulting in higher average travel 

cost for all commuters. Both Selten et al. (2007) and Morgan et al. (2009) invoke mixed 

strategy play as an explanation for these fluctuations. Next, we compare our results to the 

symmetric mixed strategy equilibrium, which predicts the probability that a commuter 

chooses the road and, therefore, the expected number of road users, as well as the 

standard deviation of the number of road users per period. In all but one case, the 

observed number of road users is significantly different from the mixed strategy 

prediction. In case of AC16 and AC10, the mixed strategy equilibrium under-predicts the 

number of road users (p-value < 0.01), while in case of AC’16 the number of observed 

road users is lower than predicted (p-value < 0.01). Similar to the pure strategy 

15 Despite concentrating on the last 15 periods of each sequence run, we find that the time trend is 
significant in all four cases. With the sole exception of CC10, the difference between the observed and the 
predicted number of road users declines over time (also see Figure 3). Results are similar irrespective of 
whether ln(period) or 1/period is used to control for the time trend. We also find that sequence dummies are 
significant at the 1 percent level in all cases, except in the AC10 treatment (p-value = 0.64). In the AC16 
and CC10 treatments, the difference from the equilibrium prediction is lower when the treatment is featured 
as the second sequence, while the opposite is true in the AC’16 treatment. Regressions are available from 
the authors upon request.  
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equilibrium, only in case of CC10 does the data correspond to the symmetric mixed 

strategy prediction (p-value = 0.53). To compute the standard deviation, we treat the 

number of road users in a given period as an observation. In Table 4 we compare the 

observed standard deviation of road users with the level predicted by the symmetric 

mixed strategy (described in Section 2). In all cases except CC10 (p-value = 0.28), the 

mixed strategy prediction is significantly different from the data. In case of AC16 and 

AC’16, the equilibrium under-predicts the variability (p-value < 0.01 in both cases) and 

in case of AC10, the equilibrium over-predicts the variability in route choices (p-value < 

0.05).  

 Figure 7 presents the time series of the average number of route changes in all four 

cases. There is no significant difference in the route change behavior when the population 

size is kept constant.  Furthermore, although the number of route changes seems higher in 

AC16 and AC’16 (n = 16) compared to AC10 and CC10 (n = 10), this difference can be 

entirely attributed to the difference in commuter size. That is, the total number of changes 

is correspondingly higher in treatments where the commuter population size is larger. 

Overall, the data show that in a given period, on average, about 30 percent of the 

commuters’ decisions feature a route change. Table 4 includes the statistics of the 

percentage of times a given commuter changes routes in consecutive periods for all four 

cases and compares it to the switching propensity as predicted by the symmetric mixed 

strategy equilibrium. In cases AC16 and AC’16, the mixed strategy equilibrium provides 

a fairly accurate description of the switching propensity, but in AC10 and CC10, the 

mixed strategy equilibrium over-predicts the number of road changes.16 Looking at 

individual commuter behavior, we find that in all four cases around 60 percent of the 

commuters changed route fewer than 5 times in the last 15 periods of play. This route 

stickiness is a profitable strategy because the commuters’ cumulative payoffs are 

negatively correlated with the number of route changes.17 The result that the overall route 

16 In Table 4, switching propensity = [probability of road change from one period to the next * number of 
opportunities for each player * number of players in a session] / total number of possible changes. For 
instance, in case of AC16, switching propensity = ([2*0.2*(1-0.2)]*14*16)/14*16 = 0.32. 
17 This relation is strictly negative in all four cases, but is statistically insignificant for AC’16 (p-value = 
0.39). Furthermore, formal non-parametric tests reject the null hypothesis that these correlation coefficients 
are not significantly different across all treatments.  
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stickiness yields higher aggregate payoff is also consistent with the results reported by 

Chmura and Pitz (2004a, 2004b) and Selten et al. (2007). 

 

 

 AC16 AC’16 AC10 CC10 

Avg. no. of road 
users 

Observed 6.13 10.89 4.15 5.2 

MSE 3.2 12.64 3.34 6 

St. dev. of no. 
of road users 

Observed 1.95 2.20 1.26 1.44 

MSE 1.6 1.63 1.49 1.55 

Switching 
Propensity 

Observed 29.4% 29.4% 28.7% 26.7% 

MSE 32% 33.2% 44.2% 48% 

Table 4. Comparison of observed and mixed strategy equilibrium 

 

As a final point, we note that subject behavior is not efficiency-seeking in nature. 

Efficiency requires that the number of road users be half of the predicted Nash 

equilibrium level. This necessarily implies unequal travel costs along the two routes. In 

particular, the social optimum is reached when the congestible road is associated with 

fewer commuters and, therefore, lower travel costs. However, in all four cases we find 

that there are significant differences between observed and efficient traffic flows (sign-

rank test p-value < 0.01 in all cases). Similar to the prior literature on traffic (Morgan et 

al. 2009, Anderson et al. 2008) and market entry games (Sundali et al. 1995, Rapoport et 

al. 1998) we find that the average number of road users is much closer to the Nash 

equilibrium number than to the efficient number. Because individuals fail to internalize 

the social cost their decisions impose on others, their expected travel costs are higher than 

at the social optimum. We find no evidence that even with experience, players move 

away from the equilibrium solution in the direction of the socially efficient outcome. 

With ten or sixteen commuters in a group, cooperation can be quite difficult to achieve, 

even with repetitions and fixed matching, especially without the ability to communicate. 
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5.2 Comparative Statics 

 Next, we focus on the comparative statics embedded in our three hypotheses. Figures 

4 through 6 present pair-wise comparison of the time series for equilibrium and observed 

number of road users in all four cases. The figures give the impression that all three 

hypotheses are strongly supported by the data. Below, we provide a formal 

documentation to confirm this visual impression.   

DT Hypothesis: A comparison of AC16 and AC’16 generates support for the DT 

hypothesis. In sessions 1-6, each group of subjects made route choices in both these case 

paradigms, with the sequence ordering reversed. For within session non-parametric tests, 

we, therefore, construct statistically independent pair-wise differences using the results 

shown in Table 3. For instance, in Session 1 the average number of road users is 5.67 for 

AC16 and 10.87 for AC’16, and so the difference of -5.2 is one of the six statistically 

independent differences. Since all six differences are negative, as predicted by the model, 

we can reject the null of zero difference using both a sign test (p-value = 0.03), and a 

sign-rank test (z = -2.207, p-value = 0.03). Similar results are obtained using pair-wise 

differences constructed from the average travel cost. In five of the six sessions, the 

average travel cost is higher in AC’16 than in AC16 (sign-rank test: z = 1.78, p-value = 

0.07). A random effects model with subject random effects, session and sequence fixed 

effects and a time trend also strongly rejects the null hypothesis of no increase in road 

congestion (t-statistic = 71.40, p-value<0.01). Thus, consistent with the DT paradox, we 

find evidence that improvement in road capacity leads to more road users and higher 

travel cost for all commuters. 

Size Hypothesis: A comparison of AC16 and AC10 generates support for the size 

hypothesis. In order to mitigate the effect of experiential learning, we concentrate on 

sessions in which these two cases are featured as the first sequence.  That is, we include 

only sessions 1-3 for AC16 and sessions 7-10 for AC10. In Table 3, the highest average 

number of road users in AC10 (4.33) is lower than the lowest average number of road 

users in AC16 (5.67). Therefore, a conservative non-parametric Mann-Whitney test based 

on one observation from each of these 7 statistically independent sessions reject the null 

hypothesis that commuter population size does not affect the level of road congestion (p-

value = 0.04). A comparison based on average difference in travel cost (p-value = 0.04) 
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and a random effect model specification (t-statistic = -15.47, p-value<0.01) also gives the 

same result. Hence, consistent with the size hypothesis, we find evidence that road 

congestion is higher and coordination problem is more severe with a larger commuter 

population size. 

Price Hypothesis: A comparison of AC10 and CC10 generates support for the price 

hypothesis. Similar to the above analysis, we generate 8 statistically independent pair-

wise differences using the data from sessions 7-14 (Table 3). Since 7 out of 8 pair-wise 

differences based on the average number of road users are positive, we find support for 

the alternative hypothesis that road congestion is worse when the constant cost pricing 

structure is employed for the metro (sign test: p-value = 0.07, sign-rank: z = 2.24, p-value 

= 0.03). Pair-wise differences based on average travel cost (p-value = 0.03) and random 

effects model that control for time trend and session and sequence fixed effects (t-statistic 

= 20.05, p-value<0.01) also yield a similar result. Note that while constant cost structure 

worsens road congestion, the uniqueness of its equilibrium prediction helps alleviate the 

coordination problem. As detailed in the previous subsection, parametric regressions 

show that the observed number of road users is not statistically different from the 

predicted level in case of constant cost pricing (CC10). 

 

5.3 Quantal Response Equilibrium  

In subsection 5.1, we provided evidence for two types of deviations from the Pareto 

dominant Nash equilibrium. In AC10 and AC16, where the predicted number of road 

users is less than half the number of commuters, subjects tend to over-use the road as 

compared to the equilibrium. In contrast, in CC10 and AC’16, subjects tend to under-use 

the road. In these treatments, the predicted number of road users is greater than half the 

number of commuters. This deviation in the direction of a more even allocation of 

commuters along the two routes is also observed if we compare the observed behavior to 

the symmetric mixed strategy equilibrium. In entry games and models of political 

participation, such patterns of over-usage and under-usage are consistent with the Quantal 

Response Equilibrium (QRE), which assumes that decision-making is prone to errors 

(Goeree and Holt, 2005b). 
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We apply the logit QRE to the model of route choice. To describe the QRE, let 𝑝𝑅 

denote the probability that a player chooses the road. Suppose that 𝑈𝑅 denotes a player’s 

expected payoff from choosing the road when all other players use the mixed strategy 

(𝑝𝑅 , 1 − 𝑝𝑅), and analogously, 𝑈𝑀 denotes the expected payoff from choosing the metro. 

Then, in the logit QRE equilibrium 

exp( )
exp( ) exp( )

R
R

R M

Up
U U

µ
µ µ

=
+

           (7)        

where 𝜇 > 0 is the error parameter to be estimated. As 𝜇 goes to infinity, 𝑝𝑅 converges to 

a mixed strategy Nash equilibrium of the game. As 𝜇 goes to zero, 𝑝𝑅 goes to one half 

(Goeree and Holt, 2005b).  The intuition behind the model is that the probability, 𝑝𝑅, 

enters both the expected payoffs in the logit function on the right-hand side of equation 

(7) as a “belief,” and on the left-hand side as a choice probability. The equilibrium 

requires that beliefs and choice probabilities are the same. For finite normal form games, 

McKelvey and Palfrey (1995) show that a QRE equilibrium exists. This equilibrium 

model has one parameter, 𝜇, which can be estimated from the data via maximum 

likelihood. 

In order to estimate the value of 𝜇, we use individual observations from the last 

15 periods of a sequence and we pool together the data from all four treatments. 

Therefore, the log likelihood function is given by a constant plus 

∑ 𝑛(𝑖)log [𝑝𝑅(𝑖)] + [𝑁(𝑖) − 𝑛(𝑖)]log [1 − 𝑝𝑅(𝑖)]𝑖∈𝑇                           (8) 

where 𝑇 = {𝐴𝐶16,𝐴𝐶′,𝐴𝐶10,𝐶𝐶10} is the set of treatments, 𝑁(𝑖) is the total number of 

observations in treatment i and 𝑛(𝑖) is the number of road choices observed in treatment 

i. Finally 𝑝𝑅(𝑖) is the QRE probability in treatment i, which is implicitly given by 

equation (7) and depends on 𝜇. Table 5 reports the maximum likelihood estimate of 𝜇 as 

well as the resulting QRE probabilities.18 The results show that the predicted QRE 

probability provides an excellent fit for aggregate observed usage of the road. 

  

18 The estimation is performed in Maple. The code is available from the authors upon request. 

26 

 

                                                 



 

 AC16 AC’16 AC10 CC10 

Probability of road choice     

     QRE 0.36 0.66 0.43 0.54 

     Mixed Strategy Equilibrium 0.20 0.79 0.34 0.60 

Number of road users     

     QRE 5.76 10.56 4.30 5.40 

     Mixed Strategy Equilibrium 3.20 12.64 3.40 6.00 

     Observed 6.13 10.89 4.15 5.20 

Estimate 𝜇̂ 0.028 

 (0.003) 

Log Likelihood -3511.26 
Table 5. Logit QRE results 

 

Figure 8 illustrates the logit QRE in the manner of Goeree and Holt (2005b). Each 

of the four graphs has the probability of using the road on the horizontal axis and the 

difference in expected payoffs between the road and the metro on the vertical axis. To 

construct the figures, note that after rearranging terms, equation (7) can be written as 

1 ln
1

R
R M

R

p U U
p

µ −  
= − − 

           (9) 

where the expected payoff difference, 𝑈𝑅 − 𝑈𝑀, is a non-linear function of 𝑝𝑅. As 𝑝𝑅 

varies, the black curve shows the logit divided by 𝜇 on the left-hand side (LHS) of 

equation (9) and the red curve shows the payoff difference on the right-hand side (RHS). 

An intersection between the red curve and the horizontal axis is a mixed strategy 

equilibrium because 𝑈𝑅 − 𝑈𝑀 = 0, whereas an intersection between the two curves is a 

QRE. To draw the curves we set 𝜇 equal to its estimated value given in Table 5. 

Figure 8 shows that in every treatment, the QRE explains the observed departures 

from the mixed strategy Nash equilibrium quite well. In AC10 and AC16 the Nash 

equilibrium predicts a lower frequency of road usage than what was observed. This 

departure from Nash equilibrium conforms with the QRE prediction. In CC10 and AC’16 

we observe the opposite pattern - the frequency of road usage in the data is greater than 
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the Nash equilibrium prediction. As Figure 8 shows, the QRE correctly predicts the 

observed pattern in these two cases as well. 

 

6. Conclusion 

The aim of this paper is to extend the experimental research on congestible networks 

in general, and on the Downs-Thomson paradox in particular. We report the results of an 

experimental analysis of a model of road congestion in a situation where to reach their 

final destination, commuters must choose between two routes: a congestible Road or an 

alternative Metro. Travel cost on the road is increasing in the number of commuters who 

choose it, and travel cost on the metro is decreasing in the number of its users. We 

examine how changes to road capacity, to the number of commuters and to the metro 

pricing scheme influence the commuters’ route-choice behavior.   

We confirm our hypotheses. By changing the road capacity, we verify the realization 

of the Downs-Thomson paradox. In particular, we find that improving the road capacity 

leads to more commuters switching to the road, thereby increasing the travel costs for 

commuters on all routes, including the alternative metro. Thus, not only the benefits from 

improving the road service are completely dissipated, but the benefits inherent to the 

mass transit service also are thwarted, and society as a whole is worse off.  By changing 

the metro pricing scheme we examine the extent to which average cost pricing is 

responsible for causing the Downs-Thomson paradox. Unlike previous experimental 

studies that assume constant cost structure for the alternative route, we find that average 

cost pricing for the metro reduces road congestion. Consistent with other coordination 

games, we also find that coordination problem is more severe with a larger commuter 

population size. In all our treatments, aggregate route choices are well accounted by the 

Nash predictions, but not by efficiency standards. Thus, our experiment reinforces the 

point that any policy initiative need to account for induced change in behavior, and 

demonstrates both strength and weakness of the equilibrium theory. We find that on one 

hand, the adjustments in traffic flows respond predictably to the exogenous changes to 

the network design; but on the other hand, there is an off-setting, persistent variability in 

traffic flows. Given some persistent individual randomness in behavior, we estimate 
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statistical quantal response equilibrium and find that the QRE model explains the data 

patterns quite well. 

To end, it seems clear that a better empirical understanding of commuters’ route 

choice behavior would aid greatly in addressing whether the standard equilibrium 

assumption is satisfied in real networks and, if it is not, how the resulting problems of 

forecasting route choices and link volumes might be resolved. While laboratory 

experiments cannot offer iron-clad solutions to policymakers, they do elucidate the 

different effects - anticipated and unanticipated - of alternative government policies. They 

offer a quick, cost-effective way to identify market and policy flaws before ideas and 

theories become major public policy initiatives. In terms of transport policies, our results 

overwhelmingly indicate that, ceteris paribus, improving road capacity will not ease 

traffic congestion. We also find support for average cost pricing structure for the mass 

transit alternative. 
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Figure 3. Average number of road users 
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Figure 4. DT comparison 
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Figure 5. Size comparison 
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Figure 6. Price comparison 
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Figure 7. Average number of route changes  
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Figure 8. Illustration of the logit QRE for the four different treatments. 
All figures are drawn using 𝝁 = 𝟎.𝟎𝟐𝟖. 
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Appendix 

Instructions 

General Instructions 
This is an experiment in the economics of strategic decision-making. Various research 

agencies have provided funds for the conduct of this research. The instructions are simple 

and if you follow them carefully and make good decisions you may earn a considerable 

amount of money that will be paid to you in cash at the end of the experiment. It is in 

your best interest to fully understand the instructions, so please feel free to ask any 

questions at any time. It is important that you do not talk or discuss your information with 

other participants in the room until the session is over. 

 This experiment consists of 2 sections. In each section there will be 20 periods. 

Therefore, you will make a total of 40 decisions. All transactions will be in experimental 

dollars. These experimental dollars will be converted to real US dollars at the end of the 

experiment at the rate of 250 experimental dollars = $1.  Notice that the more 

experimental dollars you earn, the more US dollars you earn. What you earn depends 

partly on your decisions and partly on the decisions of other 15 participants in this 

experiment. Also, for agreeing to participate, you will be given $3 US as show-up fee. 

Any additional earnings you make in this experiment will be added to this show-up fee. 

 
Specific Instructions for Section 1 
You must travel to some Destination D. When you reach D, you will earn 275 

experimental dollars. To reach D, you must choose between two options: Route A and 

Route B. You will pay a cost for traveling along each route. See the cost schedule 

accompanying these instructions. 

Travel cost on Route A depends on the number of players that also choose Route A. 

Note that if you choose Route A, your payoff decreases as the number of other players 

choosing Route A increases, and vice versa. 

Travel cost on Route B is equal to 150 or 225 experimental dollars, depending again on 

how many other players chose Route B.  

 
Your payoff from reaching destination D = 275 – Your Travel Cost 
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Figure 1. Decision Screen 

 
Example 1: Suppose in a particular period you choose Route A and 1 other player also 
chooses Route A. This means that a total of 2 players choose Route A. Then the travel 
cost for each player from Route A is 125 and you will each receive 150 (= 275 – 125) 
experimental dollars. The remaining 14 players who chose Route B pay a travel cost of 
150 and receive a payoff of 125 (=275 – 150) experimental dollars. 
 
Example 2: Suppose in a particular period you choose Route A and there are 11 other 
players who also choose Route A. This means that a total of 12 players choose Route A. 
Then the travel cost for each player from Route A is 250 and you will each receive 25 (= 
275 – 250) experimental dollars. The remaining 4 players who chose Route B pay a travel 
cost of 225 and receive a payoff of 50 (=275 – 225) experimental dollars. 
 
 You must click on either Route A button or Route B button to submit your travel 
decision. You cannot communicate or coordinate your choice with other players in any 
manner. The computer will wait until all players have made their decisions before 
displaying your period payoff in the next screen. See Figure 2 below. 
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Figure 2. Outcome Screen 

 
Once the outcome screen is displayed, you should record in your Personal Record Sheet 
the decision information: your choice, number of players who chose Route A and Route 
B, your earnings from this period and from the session so far. Then click on the button on 
the lower right of your screen to begin the next decision period. 
  

37 

 



Cost Schedule for Section 1 
 

 
Number of players 
who chose Route A 

 
Travel Cost for 

Route A 

 
Number of players 
who chose Route B 

 
Travel Cost 
for Route B 

0 100 0 225 
1 112.5 1 225 
2 125 2 225 
3 137.5 3 225 
4 150 4 225 
5 162.5 5 225 
6 165 6 225 
7 187.5 7 225 
8 200 8 225 
9 212.5 9 150 
10 225 10 150 
11 237.5 11 150 
12 250 12 150 
13 262.5 13 150 
14 275 14 150 
15 287.5 15 150 
16 300 16 150 
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