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Estimation of non-statistical
uncertainty using fuzzy-set theory
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Abstract. A novel method using a fuzzy practicable interval to characterize non-statistical
uncertainty in dynamic measurement is proposed. The method permits the uncertainty being
estimated under the conditions that the number of measurements is very small and the
probability distribution unknown. The feasibility of the method is validated by
computer-simulation experiments.
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1. Introduction for GUM (Guide to the Expression of Uncertainty in
Measurement) [3].
Measurement uncertainty shows the range within which the In dynamic measurements, estimation of the non-

true value of a measurand is to be estimated [1]. It consists ofstatistical uncertainty is very important, because not all the
statistical and non-statistical uncertainty [2—4]. For statistical uncertainty can be estimated with the statistical method [18].
uncertainty, some models have already been established-urthermore, the case is typically far more complex than
[5]. If the probability-distribution density (x) of measured  the statistical uncertainty. For example, in rocket-firing
values obeys a normal distribution, its uncertainty can be €xperiments and some destructive experiments, the number
estimated a&o, wherek is the confidence coefficient and ©Of measured values is rather small and the probability-
op is the standard deviation obtained by the Bessel method. Ifdistribution density of experiments of this kind might be
p(x) is a non-normal distribution, a considerable estimation Unknown. —In these cases, treating the problem by the
error is likely to occur if the same method is used [1,4,5]. available methods would be rather difficult.

The problem of non-normal distribution of measured To solve the above problems, the authors developed a

. ._new method using a fuzzy practicable interval to express
values has been studied by several authors. Some typica - 2 ;
o . . he non-statistical uncertainty in dynamic measurement. The
distributions were examined by Sachs [6] using the square-
h method and th babilit thod. M Ki method allows the number of measurement values to be very
graph method and the probability-paper method. Manonkian o, o g the probability distribution unknown.
[7] and Pugachev [8] used the range-enlargement method.
Hart [9] investigated the probability-treatment method.
Kubisa and Turzeniecka [10] evaluated a number o

msthOth for aplpr_OX|mzfat|rr]lg un(t:)eg_zla_mt);_m _t:neasur?rrrllent By use of subordination functions, fuzzy mathematics [19]
when the convolution of the probability distribution of the ose5ches transition laws of a fuzzy entity changing from

error component as well as the output confidence level werey 014 faiseor fromfalsetotrue. Inthe measurement, the true

known. Shu [11] suggests that thedistribution of the 5,6 X, always exists uniquely and objectively. Therefore,
parameters: and 8 should be used for approximating the e define a set as

sample distribution; the confidence coefficientandk, can A =X, (1)
thus be obtained. The conceptual uncertainty [12] reveals
three different ensembles of random values with distinct
distribution laws. Bayesian theory and the maximum-
entropy principle [13,14] are based on statistics or the
probability density. 1 xi €A

The non-parametric statistical method [15] is of interest Galx) = { 0 xidA &)
for non-Gaussian data under certain conditions. The method l
was further investigated by Lassere¢ al [16] and Qin where 1 represents true and 0 represents falssthe number
and Wang [17] in order to develop supplementary materials of measurements or the number of measurement samples.

f 2. The fuzzy interval of measured data

The setA contains a single valu¥.
In settheory, forthe measuredvalugs = 1,2, ..., n,
the setA has the following characteristic function:
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Figure 1. The subordination function and measured values.
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Figure 2. Subordination functions and mapping parameters.

treatment)* = 0.4-0.5 in general. If: is rather small, for
examplen < 200,A* = 0.4 can be adopted.

Generally speaking, the true valug is unknown and
it could be estimated by statistical analysis [20]. In figure 1,
Xy, the value ofc whenu(x) = 1, is used to estimatgg as

(6)

XO ~ x|u(x):1 = Xy.

Infuzzy-settheory, atransition can be considered to exist 4. Parameter mapping

in the subordination of; in relation toA and the intervaB of

the transition can be described by the subordination function The subordination function in fuzzy mathematics can be

(figure 1):
_ pax) Xi

< Xo 3
w(x) = 1a(2) > X (3

Xi 0

whereu(x) € [0, 1] anduz(x) € [0, 1]. The functionu(x)
describes how the measured valy@ccords with the set.
From figure 1, itcan be seen that(x) increases whilg, (x)
decreases\ € [0, 1]. Two ranges; ands, hearXg on thex
axis can be found. The interval ofsubordinate to the seit
is

4

where us, = A. The value ofu(x) is the degree of
subordination ofx to the setA. In the measured value,
givenx = 1*, thenUp, = Ufg, is uniquely determined.
This shows that the dispersal range of the measured walue
is Up, . relative to the true valu&y (figure 1). In figure 1,

B is the fuzzy intervalp* is the optimum level and/, . is
the fuzzy practicable interval under thé level. Then the
characteristic function is given as

Up, =s1+s52

1 (true)
0 (false)

malx) = A

Gan(0) = wax) < A%

®)

Equation (5) shows that values of in the interval Up,.

identified by a probability-distribution-density function in
error theory. Ifp = p(x) is known, the linear transformation

Pmin 7é Pmax
7

maps p into the interval [01] and henceu(x) can be
obtained. In equation (7), the suffixin and the suffixnax
stand for the minimum and maximum values, respectively.
Equations (6) and (7) conclude thatis in correspondence
with p,.., which is the maximum value of the probability-
distribution-density function.

Sincey; is already regarded as a fuzzy number, it lies in
the interval [Q 1]. Therefore, the linear transformations

m(x) = (p(x) = pmin)/(Pmax — Pmin)

Ny = (xv - xmin)/(xmax - xmin) (8)
n(x) = (x = Xpin)/ Emax — Xmin) (9)
T =1(x) = [n(xX) = 0| = X = x|/ Kmax = Xmin) (10)

mapx into the interval [0 1] and the measured value written
as the fuzzy numbet (x) is obtained, wherexr, can be
expressed ag, = 0.

In the interval [Q 1], ¥, stands forUy, andé; andé;
stand fors; ands,, respectively. Then equation (4) can be
written as

are usable, to be represented by 1 (true), whereas thosd/r, = s1+52 = (Ix — Xyluy0=1) + (IX — Xulup00=1)

outside the interval/ . are unusable, to be represented by 0

(false). On the basis of measurement theory, the uncertainty

in measurement can be identified Gy,...

3. The determination of A* and X,

In terms of fuzzy-set theory,* determines an entity’s border
from one extreme to another. In fazt, can also be regarded

= Xmax — Xmin) (Tlpam=2) ¥ Cmax — Xmin) (T ppm)=2)
= (Tlm=r ¥ Tlwa@=2) Cmax — Xmin)
= (51 +&2) (Ximax — Xmin) = VE Kmax — Xmin) (11)
Yr, =& +&. (12)
On the basis of the above, figure 1 can be extended further,

as shown in figure 2.
Ifthe discrete valuegy;(t;) anduz;(t;), j = 1,2, ...,

as a fuzzy number and its fuzzy character reaches the pealare known, 1(r) and ua(t) can be obtained using the

when its value equals 0.5, both true and falsez 0.5 means
that the most usable is included in the sedA. Therefore,
in theory,A* can be determined to be 0.5. In practical data

following method. Define the maximum norm

Irllee = Maxr;| i=L2.... (13)
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Use the polynomials

L

A=ADO=1+) at (14)
=1
L

fo=fr)=1+) b’ (15)

=1

to approximate discrete valuegs;(t;) and puz;(t;),
respectively. We obtain

ui(t) = fi(7) (16)
pa(t) = fo(7). 17)
Suppose that

rij = fi(r;) — puj(t)) i=12,...,v (18)
r2j = fa(tj) — p2;(t;) j=vov+l. ... (19)

Selecty; = a that satisfies
minjryfloo. (20)

Selecth; = b} that satisfies
min||r2|| so. (21)

Then the unknown coefficientg andb; can be obtained.
In equations (14) and (15],, the degree of polynomials, is
typically equal to 3 or 4.

The restraint conditions in equations (20) and (21) can
be expressed as

fi=dfi/dc
fo=dfz/dt

0
0.

(22)

<
< (23)

This reveals a steadily decreasing characteristic regarding

the subordination functions. This method is called the
maximum-norm method and the error of the approximation
is less than that of the least-squares metl§g@ndé, can be
obtained from the following expressions:

Min|e1(t) — A*|e—g, (24)

Min|2(t) — A*|r—g,- (25)

In general, the smallet; the thicker the distribution of the
measured values. Conversely, it will be thinngr.andx; are
related to the distribution density. We use the linear functions

mj = 1- (Aj = Apin)/ Biax Apax = maXAj

j=12....n—1 (30)

to approximate the probability-distribution-density function.
Similarly to the right-square-graph estimation methqdnd
v can be obtained. Therefore,

Apin = min Aj

p1j(x}) =m; i=L12...,v (31)

(32)

pn1j(rj) and po;(r;) can be obtained using equations
(7)—(23).

p2;j(xj) =m; j=v,v+l ... .n

5. The estimation algorithm

The algorithm of the method is based on the optimal theory.
The target functions are equations (20), (21), (24) and (25).
The constraint conditions are equations (22) and (23). The
optimal method used is SUMT [21]. The algorithm is
summarized as follows.

(i) Samplex; i=12, ..., n.
(if) Obtain a new ordex; according to equation (28).
(i) Compute plj(x;‘) = m; (j = 12,...,v) and
p2j(x)) = m; (j = v, v+1...,n) according to

equations (29)—(32) after obtainimgandx,.

(iv) Computen(x) andr according to equations (9) and (10)
after obtainingus;(z;) (j = 1,2,...,v) and uo;(t;)
(j =v,v+1,...,n)from equation (7).

(v) Establish the models fof; and f> from equations (14),
(15) and (18)—(21) under the condition of equations (22)
and (23).

(vi) Obtain the subordination functiongi(r) and ua(t)
according to equations (16) and (17).

(vii) Obtain U,. according to equation (11) after computing

& andé; under the level = A* from equations (24) and
(25).

The right-square-graph estimation method is described 6. Case studies

first. Whenn is rather large, for example > 30, the
measured values can be divided intgroups. In each group,
the median ig/; and the frequency i ;.

The estimation error of the proposed method is to be
examined.  The simulated data are used to analyse

Let the median of the group having the largest frequency the uncertainty in the estimation error and the normal

bex, and the number of the group belf there are repeated
frequenciesy, andv can be determined by the mean method.
Then

j=12...v (26)

(27)

p1j(xj) =m;

p2j(xj) =m; j=v,v+l...,g+1

Another approach is to use the linear estimation method.

Arrangex; from small to large to form a new order as

x' <

i=12...,n—1 (28)

*
Xit1

Define
A =xfy—x*>20.

(29)
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distribution, Rayleigh distribution, triangle distribution and
uniform distribution are considered in the investigation.

The simulated values; of the four distributions are
generated by the computational method. The valudsqQf
for the four distributions are obtained. Suppose that the true
value of the uncertainty i#/; then the relative error in the
estimation forU can be defined as

AU = |Uf,. —U|/U. (33)

In the simulationA* = 0.4 to take a small sample @ n <
50). u(x) can be estimated using the proposed estimation
method.
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Table 1. Results of the simulation and case studies=(6—10).

Distribution
Normal Rayleigh Triangle Uniform
True value of uncertainty 0.6 1.72301 1.0 1.0
Proposed Estimated 0.574 453 1.842456 1.069633 0.95879
method uncertainty 0.333788 0.9246 79
Relative error (%) 4.26 6.932 6.96 4121
44.37 7.53
Bessel Estimated 0.69054 2.09777 1.22555 1.77381
method uncertainty 0.37594 1.41687
Relative error (%) 15.09 21.75 22.56 77.38
37.34 41.69
Table 2. Results of the simulation and case studies=(4).
Distribution
Normal Rayleigh  Triangle  Uniform
True value of uncertainty 0.6 1.72301 1.0 1.0
Proposed Estimated 0.48001 1.41093 0.94380 0.82955
method uncertainty
Relative error (%) 20 18.11 5.62 17.05

6.1. The normal distribution

The first set of simulated values (n = 10) is as follows:

50.02170 5004282 5006641 4992250 4971110
50.00218 5012576 5003276 5002137 491243

The true valudJ in the simulation i€/ = 60 = 0.6.

The uncertainty estimated using the proposed method

is Up,. = Ug, = 0.574453. The relative error of the
estimation is

AU =0.574453- 0.6]/0.6 = 4.26%

By Bessel estimation, the uncertainty isz6= 0.690 54.
The relative error of estimation is 15.09%.

The second set of simulated valugs(n = 10) is as
follows:

4993576 4999186 498047 49097154 49099512
49.85121 4993983 4996095 5008453 5004063

The true valud’ in the simulation i/ = 60 = 0.6.

The uncertainty estimated using the proposed method

is Ur,., = Up, = 0.333788. The relative error of the
estimation is 44.37%.

By the Bessel estimation, the uncertainty i8z6=
0.37594. The relative error of the estimation is 37.34%.

6.2. The Rayleigh distribution

The simulated values (n = 10) are as follows:

16201 2138 08592 154193 120955
174325 118994 152684 1522 165953

The true valueJ in the simulation iU = 2 x 2.6360; =
1.72301.

The uncertainty estimated using the proposed method
is 1.842 456 and the relative error of the estimation is only
6.932%.

By the Bessel estimation, the uncertainty igz6=
2.097 77 and the relative error of the estimation is 21.75%.

6.3. The triangle distribution
The first set of simulated values (n = 10) is as follows:

554424 5625905 57059 5691365 5801535
545576 5374095 52941 5308635 5198465

The interval of the simulation is [5, 6]. The true value of the
uncertainty isV =6 —5=1.
The uncertainty estimated using the proposed method is
1.069 633 and the relative error of the estimation is 6.96%.
By the Bessel estimation, the uncertainty isz6=
1.22555 and the relative error of the estimation is 22.56%.
The second set of simulated values(n = 8) is as
follows:

556117 559951 5920055 558392
54883 540049 5079945 541608
The interval is [5, 6] and the true value of the uncertainty is
U=6-5=1.
The uncertainty estimated using the proposed method is
0.924 679 and the relative error of the estimation is 7.53%.

By the Bessel estimation, the uncertainty i8z6=
1.416 87 and the relative error of the estimation is 41.69%.

6.4. The uniform distribution

The simulated values (n = 7) are as follows:

5050303 557313 533894
5.00067 53255 585851 542444
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Table 3. Results of the simulation and case studies=(20).

Distribution
Normal Rayleigh Triangle Uniform
True value of uncertainty 0.6 1.72301 1.0 1.0
Proposed Estimated 0.657 1.69218 0.92221 0.96604
method uncertainty
Relative error (%) 9.5 1.789 7.779 3.396
Table 4. Results of the simulation and case studies=(50).
Distribution
Normal Rayleigh Triangle Uniform
True value of uncertainty 0.6 1.72301 1.0 1.0
Proposed Estimated 0.626 1.81250 1.10173 0.932663
method uncertainty
Relative error (%) 4.333 5.194 10.173 6.734

The interval is [5, 6] and the true value of the uncertainty is the true values can be obtained using the proposed method.

U=6-5=1

The reason is that the estimation method developed can

The uncertainty estimated using the proposed method isautomatically recognize the subordination functipix)

0.958 79 and the relative error of the estimation is 4.121%.

By the Bessel estimation, the uncertainty isz6=

1.773 81 and the relative error of the estimation is 77.38%.

according to the discrete characteristics, which may be
unknown prior to the measurement.
The uncertainty undek* of measured values can be

directly obtained using this method. With the new method, it
is no longer necessary to estimate the standard deviation and
the confidence coefficients. For systems of small samples and
The results of the above four cases are summarized in table Lunknown distributions, the proposed method is more suitable.
To further demonstrate the effectiveness of the proposed

method, the sampling numbeis varied for the above cases g gnclusions

and the results are shown in table 2—4.

6.5. Summary

The fuzzy practicable interval/r, can be used as the
estimation parameter for the uncertainty of measured values.
Its optimal level is 0.4—0.5Uy, is relative tox,, the value of
It can be seen that the proposed method can be used for the: when the degree of subordination equals 1. Therefpre
normal, Rayleigh, triangle and uniform distributions both for can be regarded as an estimation parameter of the true value.
largen and for smalk. According to the results in tables 1— The subordination function can be worked out from mea-
4, the proposed method can be used for small samples, forsured values through the right-square graph and the proposed
example as few as four elements. The results for samples ofestimation method without the need to know the probability-
six or more elements are rather good. distribution density. It can be expressed as a polynomial
The simulation results show that, when measured valuesunder the condition of minimizing the maximum norm.
conform to the normal distribution, the relative error of the Using the fuzzy practicable intervély, to estimate the
estimation using the proposed method is very small. The Uncertainty of measured values is characterized by a”OWing
confidence level has been computed and it is up to 99.73%.the distribution of measured values to be unknown and the
The relative error of the estimation using the Bessel method Number of samples to be very small. The proposed method
is very large under the condition of a small sampling number. ¢an be applied to the estimation of non-statistical uncertainty
When measured values conform to non-normal in dynamic measurement.
distributions, such as the Rayleigh distribution, the triangle
distribution and the uniform distribution, the results obtained Acknowledgment
using the proposed method are near to the true values of the
uncertainty and the relative errors of the estimation are very This project is supported by the National Science Foundation
small. However, using the Bessel method, the errors areof the People’s Republic of China (grant 59 805 007).
fairly large. The main reason for the large error is that the
Bessel method can be applied only under the condition of the References
distribution being normal.
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