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Abstract. A novel method using a fuzzy practicable interval to characterize non-statistical
uncertainty in dynamic measurement is proposed. The method permits the uncertainty being
estimated under the conditions that the number of measurements is very small and the
probability distribution unknown. The feasibility of the method is validated by
computer-simulation experiments.
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1. Introduction

Measurement uncertainty shows the range within which the
true value of a measurand is to be estimated [1]. It consists of
statistical and non-statistical uncertainty [2–4]. For statistical
uncertainty, some models have already been established
[5]. If the probability-distribution densityp(x) of measured
values obeys a normal distribution, its uncertainty can be
estimated askσB , wherek is the confidence coefficient and
σB is the standard deviation obtained by the Bessel method. If
p(x) is a non-normal distribution, a considerable estimation
error is likely to occur if the same method is used [1, 4, 5].

The problem of non-normal distribution of measured
values has been studied by several authors. Some typical
distributions were examined by Sachs [6] using the square-
graph method and the probability-paper method. Manonkian
[7] and Pugachev [8] used the range-enlargement method.
Hart [9] investigated the probability-treatment method.

Kubisa and Turzeniecka [10] evaluated a number of
methods for approximating uncertainty in measurement
when the convolution of the probability distribution of the
error component as well as the output confidence level were
known. Shu [11] suggests that theβ distribution of the
parametersα andβ should be used for approximating the
sample distribution; the confidence coefficientskj andka can
thus be obtained. The conceptual uncertainty [12] reveals
three different ensembles of random values with distinct
distribution laws. Bayesian theory and the maximum-
entropy principle [13, 14] are based on statistics or the
probability density.

The non-parametric statistical method [15] is of interest
for non-Gaussian data under certain conditions. The method
was further investigated by Lasserreet al [16] and Qin
and Wang [17] in order to develop supplementary materials

for GUM (Guide to the Expression of Uncertainty in
Measurement) [3].

In dynamic measurements, estimation of the non-
statistical uncertainty is very important, because not all the
uncertainty can be estimated with the statistical method [18].
Furthermore, the case is typically far more complex than
the statistical uncertainty. For example, in rocket-firing
experiments and some destructive experiments, the number
of measured values is rather small and the probability-
distribution density of experiments of this kind might be
unknown. In these cases, treating the problem by the
available methods would be rather difficult.

To solve the above problems, the authors developed a
new method using a fuzzy practicable interval to express
the non-statistical uncertainty in dynamic measurement. The
method allows the number of measurement values to be very
small and the probability distribution unknown.

2. The fuzzy interval of measured data

By use of subordination functions, fuzzy mathematics [19]
researches transition laws of a fuzzy entity changing from
trueto falseor fromfalseto true. In the measurement, the true
valueX0 always exists uniquely and objectively. Therefore,
we define a setA as

A = X0 (1)

The setA contains a single valueX0.
In set theory, for the measured valuesxi , i = 1, 2, . . . , n,

the setA has the following characteristic function:

GA(x) =
{

1 xi ∈ A
0 xi /∈ A

(2)

where 1 represents true and 0 represents false.n is the number
of measurements or the number of measurement samples.
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Figure 1. The subordination function and measured values.

In fuzzy-set theory, a transition can be considered to exist
in the subordination ofxi in relation toA and the intervalB of
the transition can be described by the subordination function
(figure 1):

µ(x) =
{
µ1(x) xi 6 X0

µ2(x) xi > X0
(3)

whereµ1(x) ∈ [0, 1] andµ2(x) ∈ [0, 1]. The functionµ(x)
describes how the measured valuexi accords with the setA.
From figure 1, it can be seen thatµ1(x) increases whileµ2(x)

decreases.λ ∈ [0, 1]. Two rangess1 ands2 nearX0 on thex
axis can be found. The interval ofx subordinate to the setA
is

UFλ = s1 + s2 (4)

where µAλ = λ. The value ofµ(x) is the degree of
subordination ofx to the setA. In the measured valuexi ,
given λ = λ∗, thenUFλ = UFλ∗ is uniquely determined.
This shows that the dispersal range of the measured valuexi
is UFλ∗ relative to the true valueX0 (figure 1). In figure 1,
B is the fuzzy interval,λ∗ is the optimum level andUFλ∗ is
the fuzzy practicable interval under theλ∗ level. Then the
characteristic function is given as

GAλ(x) =
{

1 (true) µA(x) > λ∗

0 (false) µA(x) < λ∗.
(5)

Equation (5) shows that values ofx in the intervalUFλ∗
are usable, to be represented by 1 (true), whereas those
outside the intervalUFλ∗ are unusable, to be represented by 0
(false). On the basis of measurement theory, the uncertainty
in measurement can be identified byUFλ∗ .

3. The determination of λ∗ and X0

In terms of fuzzy-set theory,λ∗ determines an entity’s border
from one extreme to another. In fact,λ∗ can also be regarded
as a fuzzy number and its fuzzy character reaches the peak
when its value equals 0.5, both true and false.λ > 0.5 means
that the most usablex is included in the setA. Therefore,
in theory,λ∗ can be determined to be 0.5. In practical data

 Subordination function                       Subordination function 
   µ1(2)                                                    µ2(2) 
            1                                                      1 

           �*                                                     �
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            0                                                      0 
               0         �1                     2                     0    �2                         2 
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Figure 2. Subordination functions and mapping parameters.

treatment,λ∗ = 0.4–0.5 in general. Ifn is rather small, for
examplen 6 200,λ∗ = 0.4 can be adopted.

Generally speaking, the true valueX0 is unknown and
it could be estimated by statistical analysis [20]. In figure 1,
xv, the value ofx whenµ(x) = 1, is used to estimateX0 as

X0 ≈ x|µ(x)=1 = xv. (6)

4. Parameter mapping

The subordination function in fuzzy mathematics can be
identified by a probability-distribution-density function in
error theory. Ifp = p(x) is known, the linear transformation

µ(x) = (p(x)− pmin)/(pmax − pmin) pmin 6= pmax
(7)

mapsp into the interval [0, 1] and henceµ(x) can be
obtained. In equation (7), the suffixmin and the suffixmax
stand for the minimum and maximum values, respectively.
Equations (6) and (7) conclude thatxv is in correspondence
with pmax , which is the maximum value of the probability-
distribution-density function.

Sincexi is already regarded as a fuzzy number, it lies in
the interval [0, 1]. Therefore, the linear transformations

ηv = (xv − xmin)/(xmax − xmin) (8)

η(x) = (x − xmin)/(xmax − xmin) (9)

τ = τ(x) = |η(x)− ηv| = |x − xv|/(xmax − xmin) (10)

mapx into the interval [0, 1] and the measured value written
as the fuzzy numberτ(x) is obtained, wherexv can be
expressed asτv = 0.

In the interval [0, 1], ψFλ stands forUFλ andξ1 andξ2

stand fors1 ands2, respectively. Then equation (4) can be
written as

UFλ = s1 + s2 = (|x − xv|µ1(x)=λ) + (|x − xv|µ2(x)=λ)
= (xmax − xmin)(τ |µ1(τ )=λ) + (xmax − xmin)(τ |µ2(τ )=λ)
= (τ |µ1(τ )=λ + τ |µ2(τ )=λ)(xmax − xmin)
= (ξ1 + ξ2)(xmax − xmin) = ψFλ(xmax − xmin) (11)

ψFλ = ξ1 + ξ2. (12)

On the basis of the above, figure 1 can be extended further,
as shown in figure 2.

If the discrete valuesµ1j (τj ) andµ2j (τj ), j = 1, 2, . . . ,
are known,µ1(τ ) and µ2(τ ) can be obtained using the
following method. Define the maximum norm

‖r‖∞ = max|rj | j = 1, 2, . . . . (13)
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Use the polynomials

f1 = f1(τ ) = 1 +
L∑
l=1

alτ
l (14)

f2 = f2(τ ) = 1 +
L∑
l=1

blτ
l (15)

to approximate discrete valuesµ1j (τj ) and µ2j (τj ),
respectively. We obtain

µ1(τ ) = f1(τ ) (16)

µ2(τ ) = f2(τ ). (17)

Suppose that

r1j = f1(τj )− µ1j (τj ) j = 1, 2, . . . , v (18)

r2j = f2(τj )− µ2j (τj ) j = v, v + 1, . . . . (19)

Selectal = a∗l that satisfies

min‖r1‖∞. (20)

Selectbl = b∗l that satisfies

min‖r2‖∞. (21)

Then the unknown coefficientsal and bl can be obtained.
In equations (14) and (15),L, the degree of polynomials, is
typically equal to 3 or 4.

The restraint conditions in equations (20) and (21) can
be expressed as

f ′1 = df1/dτ 6 0 (22)

f ′2 = df2/dτ 6 0. (23)

This reveals a steadily decreasing characteristic regarding
the subordination functions. This method is called the
maximum-norm method and the error of the approximation
is less than that of the least-squares method.ξ1 andξ2 can be
obtained from the following expressions:

min|µ1(τ )− λ∗|τ=ξ1 (24)

min|µ2(τ )− λ∗|τ=ξ2. (25)

The right-square-graph estimation method is described
first. Whenn is rather large, for examplen > 30, the
measured values can be divided intoq groups. In each group,
the median isdj and the frequency ismj .

Let the median of the group having the largest frequency
bexv and the number of the group bev. If there aret repeated
frequencies,xv andv can be determined by the mean method.
Then

p1j (xj ) = mj j = 1, 2, . . . , v (26)

p2j (xj ) = mj j = v, v + 1, . . . , q + 1. (27)

Another approach is to use the linear estimation method.
Arrangexi from small to large to form a new order as

x∗i 6 x∗i+1 i = 1, 2, . . . , n− 1. (28)

Define
1i = x∗i+1− x∗ > 0. (29)

In general, the smaller1i the thicker the distribution of the
measured values. Conversely, it will be thinner.1i andxi are
related to the distribution density. We use the linear functions

mj = 1− (1j −1min)/1max 1max = max1j

1min = min1j j = 1, 2, . . . , n− 1 (30)

to approximate the probability-distribution-density function.
Similarly to the right-square-graph estimation method,xv and
v can be obtained. Therefore,

p1j (x
∗
j ) = mj j = 1, 2, . . . , v (31)

p2j (x
∗
j ) = mj j = v, v + 1, . . . , n. (32)

µ1j (τj ) and µ2j (τj ) can be obtained using equations
(7)–(23).

5. The estimation algorithm

The algorithm of the method is based on the optimal theory.
The target functions are equations (20), (21), (24) and (25).
The constraint conditions are equations (22) and (23). The
optimal method used is SUMT [21]. The algorithm is
summarized as follows.

(i) Samplexi i = 1, 2, . . . , n.
(ii) Obtain a new orderx∗i according to equation (28).

(iii) Compute p1j (x
∗
j ) = mj (j = 1, 2, . . . , v) and

p2j (x
∗
j ) = mj (j = v, v + 1, . . . , n) according to

equations (29)–(32) after obtainingv andxv.
(iv) Computeη(x) andτ according to equations (9) and (10)

after obtainingµ1j (τj ) (j = 1, 2, . . . , v) andµ2j (τj )

(j = v, v + 1, . . . , n) from equation (7).
(v) Establish the models forf1 andf2 from equations (14),

(15) and (18)–(21) under the condition of equations (22)
and (23).

(vi) Obtain the subordination functionsµ1(τ ) and µ2(τ )

according to equations (16) and (17).
(vii) ObtainUFλ∗ according to equation (11) after computing

ξ1 andξ2 under the levelλ = λ∗ from equations (24) and
(25).

6. Case studies

The estimation error of the proposed method is to be
examined. The simulated data are used to analyse
the uncertainty in the estimation error and the normal
distribution, Rayleigh distribution, triangle distribution and
uniform distribution are considered in the investigation.

The simulated valuesxi of the four distributions are
generated by the computational method. The values ofUFλ∗
for the four distributions are obtained. Suppose that the true
value of the uncertainty isU ; then the relative error in the
estimation forU can be defined as

1U = |UFλ∗ − U |/U. (33)

In the simulation,λ∗ = 0.4 to take a small sample (46 n 6
50). µ(x) can be estimated using the proposed estimation
method.
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Table 1. Results of the simulation and case studies (n = 6–10).

Distribution

Normal Rayleigh Triangle Uniform

True value of uncertainty 0.6 1.723 01 1.0 1.0

Proposed Estimated 0.574 453 1.842 456 1.069 633 0.958 79
method uncertainty 0.333 788 0.9246 79

Relative error (%) 4.26 6.932 6.96 4.121
44.37 7.53

Bessel Estimated 0.690 54 2.097 77 1.225 55 1.773 81
method uncertainty 0.375 94 1.416 87

Relative error (%) 15.09 21.75 22.56 77.38
37.34 41.69

Table 2. Results of the simulation and case studies (n = 4).

Distribution

Normal Rayleigh Triangle Uniform

True value of uncertainty 0.6 1.723 01 1.0 1.0

Proposed Estimated 0.480 01 1.410 93 0.943 80 0.829 55
method uncertainty

Relative error (%) 20 18.11 5.62 17.05

6.1. The normal distribution

The first set of simulated valuesxi (n = 10) is as follows:

50.021 70 50.042 82 50.066 41 49.922 50 49.711 10

50.002 18 50.125 76 50.032 76 50.021 37 49.912 43.

The true valueU in the simulation isU = 6σ = 0.6.
The uncertainty estimated using the proposed method

is UFλ∗ = UF0.4 = 0.574 453. The relative error of the
estimation is

1U = |0.574 453− 0.6|/0.6= 4.26%.

By Bessel estimation, the uncertainty is 6σB = 0.690 54.
The relative error of estimation is 15.09%.

The second set of simulated valuesxi (n = 10) is as
follows:

49.935 76 49.991 86 49.980 47 49.971 54 49.995 12

49.851 21 49.939 83 49.960 95 50.084 53 50.040 63.

The true valueU in the simulation isU = 6σ = 0.6.
The uncertainty estimated using the proposed method

is UFλ∗ = UF0.4 = 0.333 788. The relative error of the
estimation is 44.37%.

By the Bessel estimation, the uncertainty is 6σB =
0.375 94. The relative error of the estimation is 37.34%.

6.2. The Rayleigh distribution

The simulated valuesxi (n = 10) are as follows:

1.6201 2.138 0.8592 1.541 93 1.209 55

1.743 25 1.189 94 1.526 84 1.522 1.659 53.

The true valueU in the simulation isU = 2× 2.636σR =
1.723 01.

The uncertainty estimated using the proposed method
is 1.842 456 and the relative error of the estimation is only
6.932%.

By the Bessel estimation, the uncertainty is 6σB =
2.097 77 and the relative error of the estimation is 21.75%.

6.3. The triangle distribution

The first set of simulated valuesxi (n = 10) is as follows:

5.544 24 5.625 905 5.7059 5.691 365 5.801 535

5.455 76 5.374 095 5.2941 5.308 635 5.198 465.

The interval of the simulation is [5, 6]. The true value of the
uncertainty isU = 6− 5= 1.

The uncertainty estimated using the proposed method is
1.069 633 and the relative error of the estimation is 6.96%.

By the Bessel estimation, the uncertainty is 6σB =
1.225 55 and the relative error of the estimation is 22.56%.

The second set of simulated valuesxi (n = 8) is as
follows:

5.561 17 5.599 51 5.920 055 5.583 92

5.4883 5.400 49 5.079 945 5.416 08.

The interval is [5, 6] and the true value of the uncertainty is
U = 6− 5= 1.

The uncertainty estimated using the proposed method is
0.924 679 and the relative error of the estimation is 7.53%.

By the Bessel estimation, the uncertainty is 6σB =
1.416 87 and the relative error of the estimation is 41.69%.

6.4. The uniform distribution

The simulated valuesxi (n = 7) are as follows:

5.050 303 5.573 13 5.338 94

5.000 67 5.3255 5.858 51 5.424 44.
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Table 3. Results of the simulation and case studies (n = 20).

Distribution

Normal Rayleigh Triangle Uniform

True value of uncertainty 0.6 1.72301 1.0 1.0

Proposed Estimated 0.657 1.692 18 0.922 21 0.966 04
method uncertainty

Relative error (%) 9.5 1.789 7.779 3.396

Table 4. Results of the simulation and case studies (n = 50).

Distribution

Normal Rayleigh Triangle Uniform

True value of uncertainty 0.6 1.72301 1.0 1.0

Proposed Estimated 0.626 1.812 50 1.101 73 0.932663
method uncertainty

Relative error (%) 4.333 5.194 10.173 6.734

The interval is [5, 6] and the true value of the uncertainty is
U = 6− 5= 1.

The uncertainty estimated using the proposed method is
0.958 79 and the relative error of the estimation is 4.121%.

By the Bessel estimation, the uncertainty is 6σB =
1.773 81 and the relative error of the estimation is 77.38%.

6.5. Summary

The results of the above four cases are summarized in table 1.
To further demonstrate the effectiveness of the proposed
method, the sampling numbern is varied for the above cases
and the results are shown in table 2–4.

7. Discussion

It can be seen that the proposed method can be used for the
normal, Rayleigh, triangle and uniform distributions both for
largen and for smalln. According to the results in tables 1–
4, the proposed method can be used for small samples, for
example as few as four elements. The results for samples of
six or more elements are rather good.

The simulation results show that, when measured values
conform to the normal distribution, the relative error of the
estimation using the proposed method is very small. The
confidence level has been computed and it is up to 99.73%.
The relative error of the estimation using the Bessel method
is very large under the condition of a small sampling number.

When measured values conform to non-normal
distributions, such as the Rayleigh distribution, the triangle
distribution and the uniform distribution, the results obtained
using the proposed method are near to the true values of the
uncertainty and the relative errors of the estimation are very
small. However, using the Bessel method, the errors are
fairly large. The main reason for the large error is that the
Bessel method can be applied only under the condition of the
distribution being normal.

This shows that the proposed method can be applied
to various conditions, in particular, the conditions of non-
normal distributions. Thus, when the distributions of
measured values are unknown, results that are very near to

the true values can be obtained using the proposed method.
The reason is that the estimation method developed can
automatically recognize the subordination functionµ(x)
according to the discrete characteristics, which may be
unknown prior to the measurement.

The uncertainty underλ∗ of measured values can be
directly obtained using this method. With the new method, it
is no longer necessary to estimate the standard deviation and
the confidence coefficients. For systems of small samples and
unknown distributions, the proposed method is more suitable.

8. Conclusions

The fuzzy practicable intervalUFλ can be used as the
estimation parameter for the uncertainty of measured values.
Its optimal level is 0.4–0.5.UFλ is relative toxv, the value of
x when the degree of subordination equals 1. Thereforexv
can be regarded as an estimation parameter of the true value.

The subordination function can be worked out from mea-
sured values through the right-square graph and the proposed
estimation method without the need to know the probability-
distribution density. It can be expressed as a polynomial
under the condition of minimizing the maximum norm.

Using the fuzzy practicable intervalUFλ to estimate the
uncertainty of measured values is characterized by allowing
the distribution of measured values to be unknown and the
number of samples to be very small. The proposed method
can be applied to the estimation of non-statistical uncertainty
in dynamic measurement.
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