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Abstract. Each solution {xn} of the equation in the title is either eventually periodic with

period 3 or else, it converges to zero – which case occurs depends on whether the ratio of the

initial values of {xn} is rational or irrational. Further, the sequence of ratios {xn/xn−1} satisfies

a first order difference equation that has periodic orbits of all integer periods except 3. p-cycles

for each p 6= 3 are explicitly determined in terms of the Fibonacci numbers. In spite of the

non-existence of period 3, the unique positive fixed point of the first order equation is shown to

be a snap-back repeller so the irrational ratios behave chaotically.

1 Introduction

Consider the second-order difference equation

xn+1 = |xn − xn−1|, n = 0, 1, 2, . . . (1)

For n = 0, we may assume that the initial values x−1, x0 are non-negative and for non-triviality,
at least one is positive. In [5], the related equation

xn+1 = cxn + a|xn − xn−1| (2)

is discussed as a member of a more general class, and in particular it is shown that for 0 ≤ c < 1/2

and c < a < 1 − c every (non-negative) solution of (2) converges to zero in a non-monotonic
fashion. Also, for a range of a, c values within the open interval (0,1), it is shown in [5] that

the ratios xn/xn−1 oscillate in a chaotic manner thereby causing highly irregular, off-equilibrium
oscillations in the converging solutions of (2).

The purpose of this note is to give a complete characterization of the asymptotic behaviors of
the solutions of Equation (1), which may be obtained from (2) by setting a = 1 and c = 0. In

particular, the solutions of (1) are seen to behave very differently than the solutions of (2) with
c = 0 and 0 < a < 1. Books such as [2] and [6] contain all of the basic background that may be
needed for this paper.
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Dividing (1) on both sides by xn gives
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which can be written as
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, n = 0, 1, 2, . . . (3)

if we define rn = xn/xn−1 for every n ≥ 0. We may think of (3) as the recursion rn+1 = φ(rn)
where φ is the piecewise smooth mapping

φ(r) =

∣

∣

∣

∣

1

r
− 1

∣

∣

∣

∣

, r > 0.

In this format, solutions {rn} of (3) can be written as rn = φn(r0) for n ≥ 1. Since φ is not

defined at r = 0, the iteration process for φ stops at step k if φk(r) = 0 for some r > 0. For example,
φ(1) = 0 so k = 1 when r = 1. Such values of r are generally determined by iterating φ backward
from 0 to get

C = ∪∞

i=0φ
−i(0) = {r > 0 : φi(r) = 0 for some positive integer i} ∪ {0}.

In the above definition, we interpret φ0 as the identity mapping. The next result establishes a
basic property of the set C with respect to the solutions of (1).

Lemma 1. If {xn} is a solution of (1) with x0/x−1 ∈ C, then {xn} eventually has period 3.

Proof. By assumption r0 = x0/x−1 ∈ C; therefore, x−1 6= 0 and there is k ≥ 0 such that

rk = φk(r0) = 0 for some least integer k. Hence, xk = 0 and it readily follows that

{xn} = {x−1, x0, . . .xk−1, 0, xk−1, xk−1, 0, xk−1, xk−1, 0, . . .}.

In the sequel, it is convenient to use the following “halves” of φ:

φ1(r) =
1

r
− 1, 0 < r ≤ 1, φ2(r) = 1 − 1

r
, r ≥ 1.

Notice that both φ1 and φ2 are one-to-one maps and their inverses are easily computed as

φ−1
1 (r) =

1

1 + r
, r ≥ 0, φ−1

2 (r) =
1

1 − r
, 0 ≤ r < 1.

The mapping φ has a unique fixed point

r̄ =

√
5− 1

2
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which is the same as the unique fixed point for φ1 because φ2 does not intersect the 45-degree line.

Next, we define the set

D = ∪∞

i=0φ
−i(r̄) = {r > 0 : φi(r) = r̄ for some positive integer i}

Note that r̄ = φ0(r̄) ∈ D and that D∩C is empty. The next result establishes a basic property
of the set D based on the fact that r̄ < 1; the simple proof is omitted.

Lemma 2. If {xn} is a solution of (1) with x0/x−1 ∈ D, then {xn} is eventually decreasing
monotonically to zero.

2 The asymptotic dichotomy

Since φ is a rational form, we see that C ⊂ Q+, where Q+ is the set of all non-negative rational
numbers. However, D∩Q+ is empty. Therefore, by Lemmas 1 and 2, period-3 solutions of (1) may

exist when the initial values x0, x−1 are rational, whereas solutions that converge to zero can occur
when the initial values are irrational. Theorem 1 below shows that this dichotomy is descriptive of

all solutions of (1). We need one more lemma before stating the theorem.

Lemma 3. Let {xn} be a solution of (1). If xk > xk−1 for some k ≥ 0, then xn < xk for all

n > k.

Proof. Under the given hypotheses we have that xk+1 = xk − xk−1 < xk. Therefore, xk+2 =

xk − xk+1 < xk, and thus, xk+3 ≤ max{xk+1, xk+2} < xk. The last step by induction extends to
n > k + 3 and completes the proof.

Theorem 1. (a) If x0/x−1 /∈ Q+ then the corresponding solution {xn} of (1) converges to zero.
(b) If x0/x−1 /∈ Q+ ∪ D then the solution {xn} converges to zero but it is not eventually

monotonic.
(c) C = Q+; thus if x0/x−1 ∈ Q+ then the corresponding solution {xn} of (1) has period 3

eventually.

Proof. (a) Since r0 = x0/x−1 /∈ C, it follows that rn 6= 0, 1 for all n. This implies that xn 6= 0, xn−1

for all n. Therefore, either xn < xn−1 for all n in which case xn converges to zero monotonically,
or there is k1 ≥ 0 such that xk1

> xk1−1 > 0. In the latter case, Lemma 3 implies that xn < xk1
for

all n > k1. If the sequence {xn} is not eventually decreasing, then there is an increasing sequence
ki of positive integers such that

xk1
> xk2

> · · · > xki
> · · ·

and for i = 1, 2, 3, . . .

xn < xki
if ki < n ≤ ki+1.

These facts imply that xn → 0 as n → ∞.
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(b) Convergence follows from Part (a). If {xn} is eventually monotonic, then there is k ≥ 0 such

that xn < xn−1 or equivalently, rn < 1 for all n ≥ k. We show that this leads to a contradiction.
Since r0 /∈ D, it follows that rn 6= r̄ for all n. Note that for r ∈ (1/2, r̄),

φ2(r) = φ2
1(r) = φ1(φ1(r)) =

2r − 1

1− r
< r.

Thus, if rk ∈ (1/2, r̄) then there is j with φj(rk) = φj
1(rk) ≤ 1/2; i.e., rk+j ≤ 1/2 and therefore,

rk+j+1 ≥ φ1(1/2) = 1 which is a contradiction. We conclude that {xn} is not eventually monotonic.
(c) Because of Lemma 1, it is only necessary to show that Q+ ⊂ C. To this end, let r0 ∈ Q+

where r0 = x0/x−1. First, let us assume that both x0 and x−1 are integers. Then the corresponding
solution of (1) also has integer terms xn. For each n, either xn ≤ xn−1 or xn > xn−1. In the latter

case, Lemma 3 implies that xn+i < xn for i ≥ 1 and in the former case, either xn < xn−1 or
xn = xn−1. That is, either rn = 1 ∈ C or xn must decrease. Since there are only finitely many
integers involved, it follows that rn = 1 or xn = 0 for some n; i.e., rn = 1 or 0 for a sufficiently

large integer n which means that r0 ∈ C.
Next, let x0 and x−1 be any pair of positive real numbers such that r0 = x0/x−1 is rational.

Then r0 = q0/q−1 where q0, q−1 are positive integers so by the preceding argument, r0 ∈ C and the
proof is complete.

Corollary 1. Let {xn} be a solution of (1). Then:
(a) {xn} has period 3 eventually if and only if x0/x−1 ∈ Q+ or x−1 = 0.

(b) xn = xk(r̄)n−k for some k ≥ 0 with xk ≤ x0 if and only if x0/x−1 ∈ D.
(c) Let x−1 6= 0. Then xn → 0 as n → ∞ if and only if x0/x−1 /∈ Q+.
(d) {xn} is unstable in all cases; i.e., (1) has no stable solutions.

The next corollary is the ratios version of Corollary 1.

Corollary 2. Let {rn} be a solution of (3). Then:

(a) rk = 0 for some k ≥ 0 (so rn is undefined for n > k) if and only if r0 ∈ Q+.
(b) For r0 /∈ Q+, {rn} is unstable.

3 Periodic ratios and regular oscillations

Let us take a closer look at the solutions of (3) when r0 is irrational. We begin by showing that
equation (3) has periodic solutions of all possible periods except 3. With minor modifications, the

next theorem applies to eventually periodic solutions as well.

Theorem 2. (a) Equation (3) has a p-periodic solution for every p 6= 3.
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(b) If {r1, . . . , rp} is a periodic solution of (3) then for the corresponding solution {xn} of (1)

it is true that

xn = x0ρ
n/p, if n/p is an integer

xn ≤ x0αρn/p, otherwise

where

ρ =

p
∏

i=1

ri < 1, α = max{r1, . . . , rp}ρ−(1−1/p) > 1.

Proof. (a) Let r1 > 1. Then r2 = φ(r1) = φ2(r1) = 1− 1/r1 < 1 and

r3 = φ(r2) = φ1(r2) =
1

r2
− 1 =

1

r1 − 1
.

Though it is possible that r3 = r1, to examine potential 3-cycles, let us assume that r3 < 1.

Then

r4 =
1

r3
− 1 = r1 − 2.

Clearly r4 6= r1, so a period-3 solution cannot occur with two points less than 1. Since φ2 maps

the interval (1,∞) into (0, 1), a period-3 solution cannot have two or more points greater than 1.
We can also rule out a period-3 solution having all three points less than 1, since φ1 is strictly

decreasing on the interval (0,1). Therefore, (3) cannot have a period-3 solution. Next, we seek
cycles of the form

r1 > 1, 0 < rk < 1, k = 2, 3, . . . , p. (4)

To explicitly determine a 2-cycle, set

r1 > 1, r2 = φ2(r1) =
r1 − 1

r1
, r3 = φ1(r2) =

1

r1 − 1
(5)

and solve the equation r3 = r1 to obtain

r1 =
1 +

√
5

2
= γ, r2 =

√
5 − 1√
5 + 1

=
1

γ2
.

The number γ here is commonly referred to as the “golden mean.” For explicitly listing cycles

of length p ≥ 4 that satisfy conditions (4) we need the famous Fibonacci numbers

y1 = 1, y2 = 2, y3 = 3, y4 = 5, y5 = 8, y6 = 13, . . .

that are generated by the linear initial value problem

yn+1 = yn + yn−1, y0 = 1, y−1 = 0. (6)
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Following the pattern that was started above, namely

r4 =
r1 − 2

1− 0
, r5 =

r1 − 3

2 − r1
, · · ·

we claim that

rk =
yk−4r1 − yk−2

yk−3 − yk−5r1
, k = 4, 5, . . . , p. (7)

with rk given by (5) for k = 1, 2, 3. If we assume that (7) holds for some k, then

rk+1 =
1

rk
− 1

=
yk−3 − yk−5r1 − yk−4r1 + yk−2

yk−4r1 − yk−2

=
yk−1 − yk−3r1

yk−4r1 − yk−2

where we used (6) for the last equality. This establishes (7) by induction. Next, using (7) we can

solve the equation rp+1 = r1 or
yp−3r1 − yp−1

yp−2 − yp−4r1
= r1

to obtain the value

r1 =
1

2

[

yp−4 +
√

y2
p−4 + 4yp−4yp−1

]

, p ≥ 4

which together with (5), (6) and (7) completely determines the p-cycle that satisfies conditions (4)
for p 6= 3.

(b) Without loss of generality, let r1 = x1/x0. If {r1, . . . , rp} is a solution with period p, and

ρ = r1r2 · · ·rp

then for each positive integer k,

xkp = r1r2 · · · rpx(k−1)p = x(k−1)pρ = · · · = x0ρ
k.

More generally, writing n = kp + l where 0 ≤ l ≤ p − 1, we get

xn = rnrn−1 · · ·rn−l+1xkp

≤ max{r1, . . . , rp}x0ρ
n/p−l/p

≤ x0 max{r1, . . . , rp}ρ−(p−1)/pρn/p

which establishes the assertion about xn. Clearly, if ρ < 1 then α > 1 since at least one of the p
points of the cycle must exceed 1. Finally, ρ < 1 for otherwise the subsequence {x0ρ

k} of {xn}
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with n = pk would be unbounded if ρ > 1, or {xn} would be periodic with period p if ρ = 1. But

neither of these cases is possible.

Remark. To prove Theorem 2(a) it would have sufficed to exhibit a period-5 solution after show-

ing that period-3 solutions are not possible. Then the proof would be complete because of the
Sharkovski ordering of cycles (see Sharkovski [8], Block and Coppel [1] or Sedaghat [6]). However,
using the specific nature of φ it was possible (and therefore, preferable) to do more and exhibit the

p-cycles explicitly.

4 Chaotic ratios and irregular oscillations

It is an interesting fact that whereas the only possible period for the solutions of Equation (1) is 3,
this is in fact the only period that does not occur for the solutions of the associated ratios equation
(3)! To identify the source of this mutual exclusion, we need to look at a generalization of (1),

namely, the two-parameter equation

xn+1 = |axn − bxn−1|. (8)

In [7] it shown that the parameter values a = b = 1 are bifurcation thresholds that when crossed,

3-periodic solutions occur for (1). Indeed, such solutions of (8) are shown to occur only for points
(a, b) on the smooth cubic curve

a3 + ab − b3 = 1 a ≥ 1 (9)

in the parameter plane that has (1,1) as an endpoint; further, (1,1) is the only point on the trace
of (9) where the orbits of the 3-periodic solutions contain the origin; other parameter values on

the curve (9) yield positive 3-periodic solutions for (8). We refer to [7] for additional details and
a thorough study of the dynamics of (8). In the remainder of this section we show that the non-

periodic solutions of (3) include chaotic solutions in the sense of Li and Yorke [3] by using the
concept of snap-back repellers from Marotto [4].

Before stating the next theorem, for convenience we quote a fundamental result on chaos from
[4] as Lemma 4. This result refers to the following concept: For a continuous map F of Rm, an

isolated fixed point x̄ is a snap-back repeller (in the weak or non-smooth sense) if there is a sequence
{Bk}l

k=−∞
of compact sets in Rm satisfying the following conditions:

(1) Bk converges to x̄ as k → −∞;
(2) F is one-to-one on each Bk and F (Bk) = Bk+1 for every k;
(3) x̄ ∈ int(Bl) and Bl ∩ Bk is empty for 1 ≤ k < l.

Snap-back repellers are more commonly defined in the differentiable setting where a more in-
tuitive description is possible. However, the mapping φ to which Theorem 3 below applies is not
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smooth so we need to use the more general definition of snap-back repellers that was quoted above.1

For a proof of the following see [4] or [6].

Lemma 4. If F has a snap-back repeller, then F is chaotic in the sense that :

(I) There is a positive integer N such that for each integer p ≥ N , F has a point of period p
(not necessarily stable);

(II) F has a scrambled set S, i.e., an uncountable set satisfying:
(i) F (S) ⊂ S and S contains no periodic points of F ;

(ii) For every x ∈ S every y where either y ∈ S and x 6= y, or y is a periodic point of F,

lim sup
k→∞

∥

∥

∥
F k(x) − F k(y)

∥

∥

∥
> 0,

(iii) There is an uncountable set S0 ⊂ S such that for every x, y ∈ S0

lim inf
k→∞

∥

∥

∥
F k(x)− F k(y)

∥

∥

∥
> 0.

We note that Theorem 2(a) already establishes Part (I) above in a stronger form for our mapping
φ. So we use Lemma 4 to prove the following:

Theorem 3. The mapping φ has a scrambled set S; hence, if {xn} is a solution of (1) with initial
values satisfying x0/x−1 ∈ S, then the sequence {xn/xn−1} of consecutive ratios is chaotic.

Proof. We show that r̄ is a snap-back repeller for φ. Define Il = [r̄ − δ, r̄ + δ] for δ > 0 small
enough that Il ⊂ (1/2, 1). Then r̄ ∈ int(Il) as required by condition (3) in the definition of snap-back

repeller. To complete the proof, we note that

φ−1
1 (r) =

1

1 + r
≤ 1, r ≥ 0, φ−1

2 (r) =
1

1 − r
≥ 1, 0 ≤ r < 1.

Define αl = r̄ − δ, βl = r̄ + δ and Il−1 = φ−1
2 (Il) = [αl−1, βl−1] where

αl−1 = φ−1
2 (αl) > 1, βl−1 = φ−1

2 (βl) > 1.

Then Il−1 ⊂ (1,∞) and Il−1 ∩ Il is empty. Further,

φ−1
1 (Il−1) = [φ−1

1 (βl−1), φ
−1
1 (αl−1)].

Let βl−2 = φ−1
1 (αl−1), αl−2 = φ−1

1 (βl−1) and define Il−2 = [αl−2, βl−2]. Then

αl−1 > 1 > r̄ ⇒ βl−2 = φ−1
1 (αl−1) < φ−1

1 (r̄) = r̄

1Refer to the paper ”The Li-Yorke theorem and infinite discontinuities, J. Math. Analysis and Appl. 296 (2004)
538-540 (or its pre-publication copy at http://www.discretedynamics.net/Articles/articles.htm) for a correction on
the use of snap-back repellers.
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so that

Il−2 ⊂ (0, r̄). (10)

Next, we define

Il−3 = φ−1
1 (Il−2) = [φ−1

1 (βl−2), φ
−1
1 (αl−2)] = [αl−3, βl−3]

and notice that αl−3 > φ−1
1 (r̄) = r̄ and βl−3 ≤ 1. Hence,

Il−3 ⊂ (r̄, 1]. (11)

Now, if for j ≥ 2 we define the following sequence

Il−j = φ−1
1 (Il−j+1) = [αl−j, βl−j]

where

αl−j = φ−1
1 (βl−j+1) =

1

1 + βl−j+1
,

βl−j = φ−1
1 (αl−j+1) =

1

1 + αl−j+1

then from (10) and (11) it follows that 0 < αl−j , βl−j ≤ 1 for j ≥ 2 and thus, the intervals Il−j are
well-defined. In fact, if φ−2

1 (r) = φ−1
1 (φ−1

1 (r)), then

αl−2j = φ−2
1 (αl−2j+2) > 0, βl−2j = φ−2

1 (βl−2j+2) < r̄.

We claim that

αl−2j, βl−2j → r̄ as j → ∞. (12)

If this is true, then

αl−2j−1 = φ−1
1 (βl−2j) → r̄, βl−2j−1 = φ−1

1 (αl−2j) → r̄

and it follows that the compact intervals Il−j converge to r̄. From this and the fact that φ1 is
strictly decreasing on (0, 1] it necessarily follows that r̄ is a snap-back repeller (in the definition of
snap-back repeller we may take k ≥ 2 to be the least integer j for which Il−j ∩ Il is non-empty).

To prove the claim (12), it suffices to show that if s ∈ (0, r̄) then

lim
n→∞

φ−2n
1 (s) = r̄. (13)

To see this, observe that if r < r̄ then

φ−2
1 (r) =

1 + r

2 + r
> r

1 + 1/r̄

2 + r̄
= r.
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That is,

φ−2
1 (r) > r for r ∈ (0, r̄). (14)

Further, φ−2
1 is an increasing function since dφ−2

1 /dr = 1/(2 + r)2 > 0. It follows that

r < φ−2
1 (r) < r̄ for r ∈ (0, r̄)

since φ−2
1 (r̄) = r̄, and together with (14), this proves that {φ−2n

1 (s)} is an increasing sequence in
(0, r̄). Therefore, (13) is true, which proves (12) and thus completes the proof that r̄ is a snap-back

repeller. The proof of the theorem is completed upon applying Lemma 4.

Remarks. 1. (Elements of D) Each interval Il in the proof of Theorem 3 contains an inverse image
of r̄, i.e., an element of the set D mentioned earlier from which all eventually monotonic solutions

arise. It is possible to explicitly list these particular elements of D. Starting with r̄, we compute

r∗ = φ−1
2 (r̄) =

1

1 − r̄
=

2

3 −
√

5

Next, we obtain successive inverse images φ−n
1 (r∗) for all positive integers n. It can be shown

by straightforward induction that

φ−n
1 (r∗) =

2yn + yn−2 + yn−2

√
5

2yn+1 + yn−1 + yn−1

√
5

where yn is the n-th Fibonacci number as generated by the difference equation (6).

2. The mapping φ is a one-dimensional semiconjugate factor of the mapping

F (x, y) = (|x− y|, x)

namely, the standard vectorization or the unfolding of Eq.(1). The ratios may be naturally consid-
ered a link between φ and F. We have seen the usefulness of this semiconjugate relationship above

in describing the asymptotic behavior of Eq.(1). For more on one-dimensional semiconjugates in
general as well as other examples, see [6].
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