Spies and Revolutionaries

Daniel W. Cranston
Virginia Commonwealth University dcranston@vcu.edu

Joint with Cliff Smyth and Douglas West 24th Cumberland Conference
13 May 2011

Introduction

Setup: r revolutionaries play against s spies on a graph G. Each rev. moves to a vertex, then each spy moves to a vertex.

Introduction

Setup: r revolutionaries play against s spies on a graph G.
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev's want to get m rev's at a common vertex, with no spy.

Introduction

Setup: r revolutionaries play against s spies on a graph G. Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev's want to get m rev's at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.

Introduction

Setup: r revolutionaries play against s spies on a graph G.
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev's want to get m rev's at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.
Obs 1: If $s \geq|V(G)|$, then the spies win.

Introduction

Setup: r revolutionaries play against s spies on a graph G.
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev's want to get m rev's at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.
Obs 1: If $s \geq|V(G)|$, then the spies win.

Introduction

Setup: r revolutionaries play against s spies on a graph G.
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev's want to get m rev's at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.
Obs 1: If $s \geq|V(G)|$, then the spies win.

Introduction

Setup: r revolutionaries play against s spies on a graph G.
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev's want to get m rev's at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.
Obs 1: If $s \geq|V(G)|$, then the spies win.

Obs 2: If $s<|V(G)|$ and $\lfloor r / m\rfloor>s$, then rev's win.

Introduction

Setup: r revolutionaries play against s spies on a graph G.
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev's want to get m rev's at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.
Obs 1: If $s \geq|V(G)|$, then the spies win.

Obs 2: If $s<|V(G)|$ and $\lfloor r / m\rfloor>s$, then rev's win.
Ex: Say $m=2, r=8$, and $s=3$.

Introduction

Setup: r revolutionaries play against s spies on a graph G.
Each rev. moves to a vertex, then each spy moves to a vertex.
Goal: Rev's want to get m rev's at a common vertex, with no spy.
Each turn: Each rev. moves/stays, then each spy moves/stays.
Obs 1: If $s \geq|V(G)|$, then the spies win.

Obs 2: If $s<|V(G)|$ and $\lfloor r / m\rfloor>s$, then rev's win.
Ex: Say $m=2, r=8$, and $s=3$.
So we assume $\lfloor r / m\rfloor \leq s<|V(G)|$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly.
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly.
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly.
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly.
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly.
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly.
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly.
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly.
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly.
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly.
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly.
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly.
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly.
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly. (True for trees, too.)
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly. (True for trees, too.)
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Ex: C_{5} is not spy-friendly.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly. (True for trees, too.)
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Ex: C_{5} is not spy-friendly.
Consider $m=2, r=3, s=1$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly. (True for trees, too.)
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Ex: C_{5} is not spy-friendly.
Consider $m=2, r=3, s=1$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly. (True for trees, too.)
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Ex: C_{5} is not spy-friendly.
Consider $m=2, r=3, s=1$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly. (True for trees, too.)
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Ex: C_{5} is not spy-friendly.
Consider $m=2, r=3, s=1$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly. (True for trees, too.)
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Ex: C_{5} is not spy-friendly.
Consider $m=2, r=3, s=1$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly. (True for trees, too.)
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Ex: C_{5} is not spy-friendly.
Consider $m=2, r=3, s=1$.
Lemma:
For $k \geq 4, C_{k}$ is not spy-friendly.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r / m\rfloor \leq s$.

Thm 1: All paths are spy-friendly. (True for trees, too.)
Pf: One spy follows each m th rev. When rev's move, spies repeat.

Ex: P_{9} is spy-friendly. Consider $m=3, r=13, s=4$.

Ex: C_{5} is not spy-friendly.
Consider $m=2, r=3, s=1$.
Lemma:
For $k \geq 4, C_{k}$ is not spy-friendly. ... but it's very close.

Nearly Spy-friendly Graphs

Def: A graph G is nearly spy-friendly if the spies win on G for all integers m, r, s such that $\lceil r / m\rceil \leq s$.

Nearly Spy-friendly Graphs

Def: A graph G is nearly spy-friendly if the spies win on G for all integers m, r, s such that $[r / m\rceil \leq s$.
Thm 3: All cycles are nearly spy-friendly.

Nearly Spy-friendly Graphs

Def: A graph G is nearly spy-friendly if the spies win on G for all integers m, r, s such that $\lceil r / m\rceil \leq s$.
Thm 3: All cycles are nearly spy-friendly.
Pf. idea: Same as for paths; one spy follows each m th rev.

Nearly Spy-friendly Graphs

Def: A graph G is nearly spy-friendly if the spies win on G for all integers m, r, s such that $\lceil r / m\rceil \leq s$.
Thm 3: All cycles are nearly spy-friendly.
Pf. idea: Same as for paths; one spy follows each m th rev.

Ex: Consider C_{8}, when $m=2, r=8$, and $s=4$.

Nearly Spy-friendly Graphs

Def: A graph G is nearly spy-friendly if the spies win on G for all integers m, r, s such that $\lceil r / m\rceil \leq s$.
Thm 3: All cycles are nearly spy-friendly.
Pf. idea: Same as for paths; one spy follows each m th rev.

Ex: Consider C_{8}, when $m=2, r=8$, and $s=4$.

Nearly Spy-friendly Graphs

Def: A graph G is nearly spy-friendly if the spies win on G for all integers m, r, s such that $\lceil r / m\rceil \leq s$.
Thm 3: All cycles are nearly spy-friendly. Pf. idea: Same as for paths; one spy follows each m th rev.

Ex: Consider C_{8}, when $m=2, r=8$, and $s=4$.

Nearly Spy-friendly Graphs

Def: A graph G is nearly spy-friendly if the spies win on G for all integers m, r, s such that $\lceil r / m\rceil \leq s$.
Thm 3: All cycles are nearly spy-friendly. Pf. idea: Same as for paths; one spy follows each m th rev.

Ex: Consider C_{8}, when $m=2, r=8$, and $s=4$.

Nearly Spy-friendly Graphs

Def: A graph G is nearly spy-friendly if the spies win on G for all integers m, r, s such that $\lceil r / m\rceil \leq s$.
Thm 3: All cycles are nearly spy-friendly. Pf. idea: Same as for paths; one spy follows each m th rev.

Ex: Consider C_{8}, when $m=2, r=8$, and $s=4$.

Nearly Spy-friendly Graphs

Def: A graph G is nearly spy-friendly if the spies win on G for all integers m, r, s such that $\lceil r / m\rceil \leq s$.
Thm 3: All cycles are nearly spy-friendly.
Pf. idea: Same as for paths; one spy follows each m th rev.

Ex: Consider C_{8}, when $m=2, r=8$, and $s=4$.
We can renumber the rev's so they always stay in order.

Nearly Spy-friendly Graphs

Def: A graph G is nearly spy-friendly if the spies win on G for all integers m, r, s such that $\lceil r / m\rceil \leq s$.
Thm 3: All cycles are nearly spy-friendly.
Pf. idea: Same as for paths; one spy follows each m th rev.

Ex: Consider C_{8}, when $m=2, r=8$, and $s=4$.
We can renumber the rev's so they always stay in order.

Nearly Spy-friendly Graphs

Def: A graph G is nearly spy-friendly if the spies win on G for all integers m, r, s such that $\lceil r / m\rceil \leq s$.
Thm 3: All cycles are nearly spy-friendly.
Pf. idea: Same as for paths; one spy follows each m th rev.

Ex: Consider C_{8}, when $m=2, r=8$, and $s=4$.
We can renumber the rev's so they always stay in order.

Playing on the Sun

Def: A sun is a cycle with paths hanging off some vertices.

Playing on the Sun
Def: A sun is a cycle with paths hanging off some vertices.

Playing on the Sun

Def: A sun is a cycle with paths hanging off some vertices.

Thm 4: All suns are nearly spy-friendly.

Playing on the Sun

Def: A sun is a cycle with paths hanging off some vertices.

Thm 4: All suns are nearly spy-friendly. ($\lceil r / m\rceil$ spies can win)

Playing on the Sun

Def: A sun is a cycle with paths hanging off some vertices.

Thm 4: All suns are nearly spy-friendly. ($\lceil r / m\rceil$ spies can win) Pf. idea: Use cycle strategy on cycle and path strategy on paths.

Playing on the Sun

Def: A sun is a cycle with paths hanging off some vertices.

Thm 4: All suns are nearly spy-friendly. ($\lceil r / m\rceil$ spies can win) Pf. idea: Use cycle strategy on cycle and path strategy on paths. Ques: What if rev's move back and forth from the cycle to paths?

Playing on the Sun

Def: A sun is a cycle with paths hanging off some vertices.

Thm 4: All suns are nearly spy-friendly. ($\lceil r / m\rceil$ spies can win) Pf. idea: Use cycle strategy on cycle and path strategy on paths. Ques: What if rev's move back and forth from the cycle to paths?

Playing on the Sun (cont'd)

Key Insights (for cycles):
Say the spies have a good position on a cycle.

Playing on the Sun (cont'd)

Key Insights (for cycles):
Say the spies have a good position on a cycle.

$$
(m=2, r=8, s=4)
$$

Playing on the Sun (cont'd)

Key Insights (for cycles):

Say the spies have a good position on a cycle.

- If m new rev's and 1 new spy appear on the same vertex of the cycle, the new position is still good for the spies.

Playing on the Sun (cont'd)

Key Insights (for cycles):
Say the spies have a good position on a cycle.

- If m new rev's and 1 new spy appear on the same vertex of the cycle, the new position is still good for the spies.

Playing on the Sun (cont'd)

Key Insights (for cycles):
Say the spies have a good position on a cycle.

- If m new rev's and 1 new spy appear on the same vertex of the cycle, the new position is still good for the spies.
- Same is true if m rev's and 1 spy disappear.

Playing on the Sun (cont'd)

Key Insights (for cycles):
Say the spies have a good position on a cycle.

- If m new rev's and 1 new spy appear on the same vertex of the cycle, the new position is still good for the spies.
- Same is true if m rev's and 1 spy disappear.

Playing on the Sun (cont'd)

Key Insights (for paths):
Suppose the spies have a good position on a path.

Playing on the Sun (cont'd)

Key Insights (for paths):
Suppose the spies have a good position on a path.

Ex: P_{9} with $m=3, r=13, s=4$.

Playing on the Sun (cont'd)

Key Insights (for paths):
Suppose the spies have a good position on a path.

Ex: P_{9} with $m=3, r=13, s=4$.

- If 1 new rev appears on far end, spies are still good unless $m \mid r$.

Playing on the Sun (cont'd)

Key Insights (for paths):
Suppose the spies have a good position on a path.

Ex: P_{9} with $m=3, r=14, s=4$.

- If 1 new rev appears on far end, spies are still good unless $m \mid r$.

Playing on the Sun (cont'd)

Key Insights (for paths):
Suppose the spies have a good position on a path.

Ex: P_{9} with $m=3, r=14, s=4$.

- If 1 new rev appears on far end, spies are still good unless $m \mid r$.
- If $m \mid r$, then spies are good if a new spy appears on the far end along with the new rev.

Playing on the Sun (cont'd)

Key Insights (for paths):
Suppose the spies have a good position on a path.

Ex: P_{9} with $m=3, r=15, s=5$.

- If 1 new rev appears on far end, spies are still good unless $m \mid r$.
- If $m \mid r$, then spies are good if a new spy appears on the far end along with the new rev.

Playing on the Sun (cont'd)

Key Insights (for paths):
Suppose the spies have a good position on a path.

Ex: P_{9} with $m=3, r=15, s=5$.

- If 1 new rev appears on far end, spies are still good unless $m \mid r$.
- If $m \mid r$, then spies are good if a new spy appears on the far end along with the new rev.
- We can also reverse these moves, and the spies remain good.

Playing on the Sun (cont'd)

Key Insights (for paths):
Suppose the spies have a good position on a path.

Ex: P_{9} with $m=3, r=14, s=4$.

- If 1 new rev appears on far end, spies are still good unless $m \mid r$.
- If $m \mid r$, then spies are good if a new spy appears on the far end along with the new rev.
- We can also reverse these moves, and the spies remain good.

Playing on the Sun (cont'd)

Key Insights (for paths):
Suppose the spies have a good position on a path.

Ex: P_{9} with $m=3, r=13, s=4$.

- If 1 new rev appears on far end, spies are still good unless $m \mid r$.
- If $m \mid r$, then spies are good if a new spy appears on the far end along with the new rev.
- We can also reverse these moves, and the spies remain good.

Putting It All Together

Thm 4: All suns are nearly spy-friendly.

Putting It All Together

Thm 4: All suns are nearly spy-friendly. ($\lceil r / m\rceil$ spies can win)

Putting It All Together

Thm 4: All suns are nearly spy-friendly. ($\lceil r / m\rceil$ spies can win) Pf. idea: Use cycle strategy on cycle and path strategy on paths.

Putting It All Together

Thm 4: All suns are nearly spy-friendly. ($\lceil r / m\rceil$ spies can win) Pf. idea: Use cycle strategy on cycle and path strategy on paths.

Putting It All Together

Thm 4: All suns are nearly spy-friendly. ($\lceil r / m\rceil$ spies can win) Pf. idea: Use cycle strategy on cycle and path strategy on paths.

Putting It All Together

Thm 4: All suns are nearly spy-friendly. ($\lceil r / m\rceil$ spies can win) Pf. idea: Use cycle strategy on cycle and path strategy on paths.

Putting It All Together

Thm 4: All suns are nearly spy-friendly. ($\lceil r / m\rceil$ spies can win) Pf. idea: Use cycle strategy on cycle and path strategy on paths.

Putting It All Together

Thm 4: All suns are nearly spy-friendly. ($\lceil r / m\rceil$ spies can win) Pf. idea: Use cycle strategy on cycle and path strategy on paths.

Putting It All Together

Thm 4: All suns are nearly spy-friendly. ($\lceil r / m\rceil$ spies can win) Pf. idea: Use cycle strategy on cycle and path strategy on paths.

Putting It All Together

Thm 4: All suns are nearly spy-friendly. ($\lceil r / m\rceil$ spies can win) Pf. idea: Use cycle strategy on cycle and path strategy on paths.

Putting It All Together

Thm 4: All suns are nearly spy-friendly. ($\lceil r / m\rceil$ spies can win) Pf. idea: Use cycle strategy on cycle and path strategy on paths.

