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Definitions

Def: A set overlaps another set if they intersect but neither
contains the other.

An overlap representation f of a graph G
assigns sets to V (G ) so that uv ∈ E (G ) iff f (u) and f (v) overlap.
The overlap number ϕ(G ) is the minimum size of f .
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Def: A pure overlap representation f of a graph G is an overlap
representation where no set contains another. The pure overlap
number Φ(G ) is the minimum size of f .

So ϕ(G ) ≤ 5, but Φ(G ) ≤ 6.
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Main Results

Thm 1: We have a linear-time algorithm to determine ϕ(T ) for
every tree T . Corollary: ϕ(T ) ≤ |T |.

Thm 2: If G is a planar n-vertex graph and n ≥ 5, then
ϕ(G ) ≤ 2n − 5, which is sharp for n = 8 and n ≥ 10.

Thm 3: If G is an arbitrary n-vertex graph and n ≥ 14, then
ϕ(G ) ≤ n2/4− n/2− 1, which is sharp for even n.
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Preliminaries

Decomposition Bound: Let F be a decomposition of graph G
into cliques of order at most k, where k ≥ 2. If δ(G ) ≥ k, then
Φ(G ) ≤ |F|. In particular, δ(G ) ≥ 2 implies Φ(G ) ≤ |E (G )|.

Pf: Give each clique in F its own label, and give each vertex all
the labels of cliques that contain it.

Prop: If G is triangle-free, then Φ(G ) ≥ |E (G )|,
and Φ(G ) = |E (G )| when δ(G ) ≥ 2 .

Pf: We can’t do better than one label on each edge.

Deletion Bound: If v is a vertex with d(v) ≤ 2 in a graph G with
at least 3 vertices, then Φ(G ) ≤ Φ(G − v) + 2. If d(v) ≤ 1, then
ϕ(G ) ≤ ϕ(G − v) + 2.

Pf: Easy for Φ, and not too hard for ϕ.
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Preliminaries (part 2)

Edge Bound: If δ(G ) ≥ 2 and G 6= K3, then ϕ(G ) ≤ |E (G )| − 1.

Pf: Slightly modify a pure overlap labeling of size |E (G )|.

Def: A star-cutset in a graph G is a separating set S containing a
vertex x adjacent to all of S − x .

Edge Lower Bound: If G is a triangle-free graph with no
star-cutset, then ϕ(G ) ≥ |E (G )| − 1.

Pf idea: We can’t do anything better than in the Edge Bound.

Cor. 1 If G is a triangle-free plane graph
in which every face has length 4, and G
has no star-cutset, then ϕ(G ) = 2n − 5.

Cor. 2 For even n ≥ 6, if we obtain Gn

by deleting a matching of size n/2 from
Kn/2,n/2, then ϕ(Gn) = n2/4− n/2− 1.
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Planar Graphs
Lemma 1: If G is planar with n ≥ 5 vertices, then G decomposes
into at most 2n− 5 edges and facial triangles unless every face is a
4-cycle (then G consists of 2n − 4 edges).

Pf: Let F denote our decomposition of G into edges and triangles.
We induct on t, the number of facial triangles in G .
If t = 0, then Euler’s formula implies the claim. So suppose t ≥ 1.

G

⇔
G ′Case 1: G ′ has a facial (non-4)-cycle.

Now |F ′| ≤ 2(n + 1)− 5 = 2n − 3,
so |F| ≤ (2n − 3)− 3 + 1 = 2n − 5.

Case 2: G ′ has only facial 4-cycles.
Now |F ′| = 2(n + 1)− 4 = 2n − 2,
so |F| = (2n − 2)− 9 + 3 = 2n − 8.

⇔
Case 3: Or 2 faces share an edge,
so |F| ≤ |F ′| − 8 + 4 = 2n − 6.
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Case 2: G ′ has only facial 4-cycles.
Now |F ′| = 2(n + 1)− 4 = 2n − 2,
so |F| = (2n − 2)− 9 + 3 = 2n − 8.

⇔
Case 3: Or 2 faces share an edge,
so |F| ≤ |F ′| − 8 + 4 = 2n − 6.
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Planar Graphs

Lemma 1: If G is planar with n vertices and n ≥ 5 then G
decomposes into at most 2n − 5 edges and facial triangles unless
every face is a 4-cycle (then G consists of 2n − 4 edges).

Cor: If G is planar, n ≥ 5, and δ(G ) ≥ 3, then Φ(G ) ≤ 2n − 5,
unless G has 2n − 4 edges and every face is a 4-cycle.

Pf: This follows from Lemma 1 and the Decomposition Bound.

Thm 2: If G is a planar n-vertex graph and n ≥ 5, then
ϕ(G ) ≤ 2n − 5, which is sharp for n = 8 and n ≥ 10.

Pf sketch: Use the Deletion Bound (Φ(G ) ≤ Φ(G − v) + 2 if
d(v) ≤ 2) to reduce to δ(G ) ≥ 3, then invoke the corollary above.
If G consists of 2n − 4 edges, then ϕ(G ) ≤ |E (G )| − 1 = 2n − 5.
What’s missing? Lot’s of messy base cases.
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Bipartite Graphs

Lemma: Let G be an n-vertex bipartite graph.
If n ≥ 7 and δ(G ) ≥ 2, then ϕ(G ) ≤ n2/4− n/2− 1.

Pf: Since ϕ(G ) ≤ |E (G )| − 1, we have |E (G )| > n2/4− n/2.
Let X and Y be the parts, with k = |X | ≤ |Y |. If G has a clone,
we can delete it. So at most one vertex of Y has degree k.

y

y ′

x ′

Thus |E (G )| ≤ (k − 1)(n − k) + 1,
and |X | = bn/2c and |Y | = dn/2e,
and some y ∈ Y has degree k
and all others have degree k − 1.

Delete y to form G ′. Now
Φ(G ′) ≤ |E (G ′)| =

⌊
n2/4− n/2 + 1

⌋
− bn/2c =

⌊
n2/4− n + 1

⌋
.

Let f be a pure overlap labeling of G ′ using one label per edge.
Let y ′ be a vertex of Y in G ′ and let x ′ be its non-neighbor in X .
Extend f to G as follows: let f (y) = f (y ′) ∪ a (where a is a new
label) and add a to f (x ′). So ϕ(G ) ≤ Φ(G ′) + 1 ≤

⌊
n2/4− n + 2

⌋
.



Bipartite Graphs

Lemma: Let G be an n-vertex bipartite graph.
If n ≥ 7 and δ(G ) ≥ 2, then ϕ(G ) ≤ n2/4− n/2− 1.

Pf: Since ϕ(G ) ≤ |E (G )| − 1, we have |E (G )| > n2/4− n/2.

Let X and Y be the parts, with k = |X | ≤ |Y |. If G has a clone,
we can delete it. So at most one vertex of Y has degree k.

y

y ′

x ′

Thus |E (G )| ≤ (k − 1)(n − k) + 1,
and |X | = bn/2c and |Y | = dn/2e,
and some y ∈ Y has degree k
and all others have degree k − 1.

Delete y to form G ′. Now
Φ(G ′) ≤ |E (G ′)| =

⌊
n2/4− n/2 + 1

⌋
− bn/2c =

⌊
n2/4− n + 1

⌋
.

Let f be a pure overlap labeling of G ′ using one label per edge.
Let y ′ be a vertex of Y in G ′ and let x ′ be its non-neighbor in X .
Extend f to G as follows: let f (y) = f (y ′) ∪ a (where a is a new
label) and add a to f (x ′). So ϕ(G ) ≤ Φ(G ′) + 1 ≤

⌊
n2/4− n + 2

⌋
.



Bipartite Graphs

Lemma: Let G be an n-vertex bipartite graph.
If n ≥ 7 and δ(G ) ≥ 2, then ϕ(G ) ≤ n2/4− n/2− 1.

Pf: Since ϕ(G ) ≤ |E (G )| − 1, we have |E (G )| > n2/4− n/2.
Let X and Y be the parts, with k = |X | ≤ |Y |. If G has a clone,
we can delete it. So at most one vertex of Y has degree k.

y

y ′

x ′

Thus |E (G )| ≤ (k − 1)(n − k) + 1,
and |X | = bn/2c and |Y | = dn/2e,
and some y ∈ Y has degree k
and all others have degree k − 1.

Delete y to form G ′. Now
Φ(G ′) ≤ |E (G ′)| =

⌊
n2/4− n/2 + 1

⌋
− bn/2c =

⌊
n2/4− n + 1

⌋
.

Let f be a pure overlap labeling of G ′ using one label per edge.
Let y ′ be a vertex of Y in G ′ and let x ′ be its non-neighbor in X .
Extend f to G as follows: let f (y) = f (y ′) ∪ a (where a is a new
label) and add a to f (x ′). So ϕ(G ) ≤ Φ(G ′) + 1 ≤

⌊
n2/4− n + 2

⌋
.



Bipartite Graphs

Lemma: Let G be an n-vertex bipartite graph.
If n ≥ 7 and δ(G ) ≥ 2, then ϕ(G ) ≤ n2/4− n/2− 1.

Pf: Since ϕ(G ) ≤ |E (G )| − 1, we have |E (G )| > n2/4− n/2.
Let X and Y be the parts, with k = |X | ≤ |Y |. If G has a clone,
we can delete it. So at most one vertex of Y has degree k.

y

y ′

x ′

Thus |E (G )| ≤ (k − 1)(n − k) + 1,

and |X | = bn/2c and |Y | = dn/2e,
and some y ∈ Y has degree k
and all others have degree k − 1.

Delete y to form G ′. Now
Φ(G ′) ≤ |E (G ′)| =

⌊
n2/4− n/2 + 1

⌋
− bn/2c =

⌊
n2/4− n + 1

⌋
.

Let f be a pure overlap labeling of G ′ using one label per edge.
Let y ′ be a vertex of Y in G ′ and let x ′ be its non-neighbor in X .
Extend f to G as follows: let f (y) = f (y ′) ∪ a (where a is a new
label) and add a to f (x ′). So ϕ(G ) ≤ Φ(G ′) + 1 ≤

⌊
n2/4− n + 2

⌋
.



Bipartite Graphs

Lemma: Let G be an n-vertex bipartite graph.
If n ≥ 7 and δ(G ) ≥ 2, then ϕ(G ) ≤ n2/4− n/2− 1.

Pf: Since ϕ(G ) ≤ |E (G )| − 1, we have |E (G )| > n2/4− n/2.
Let X and Y be the parts, with k = |X | ≤ |Y |. If G has a clone,
we can delete it. So at most one vertex of Y has degree k.

y

y ′

x ′

Thus |E (G )| ≤ (k − 1)(n − k) + 1,
and |X | = bn/2c and |Y | = dn/2e,

and some y ∈ Y has degree k
and all others have degree k − 1.

Delete y to form G ′. Now
Φ(G ′) ≤ |E (G ′)| =

⌊
n2/4− n/2 + 1

⌋
− bn/2c =

⌊
n2/4− n + 1

⌋
.

Let f be a pure overlap labeling of G ′ using one label per edge.
Let y ′ be a vertex of Y in G ′ and let x ′ be its non-neighbor in X .
Extend f to G as follows: let f (y) = f (y ′) ∪ a (where a is a new
label) and add a to f (x ′). So ϕ(G ) ≤ Φ(G ′) + 1 ≤

⌊
n2/4− n + 2

⌋
.



Bipartite Graphs

Lemma: Let G be an n-vertex bipartite graph.
If n ≥ 7 and δ(G ) ≥ 2, then ϕ(G ) ≤ n2/4− n/2− 1.

Pf: Since ϕ(G ) ≤ |E (G )| − 1, we have |E (G )| > n2/4− n/2.
Let X and Y be the parts, with k = |X | ≤ |Y |. If G has a clone,
we can delete it. So at most one vertex of Y has degree k.

y

y ′

x ′

Thus |E (G )| ≤ (k − 1)(n − k) + 1,
and |X | = bn/2c and |Y | = dn/2e,
and some y ∈ Y has degree k
and all others have degree k − 1.

Delete y to form G ′. Now
Φ(G ′) ≤ |E (G ′)| =

⌊
n2/4− n/2 + 1

⌋
− bn/2c =

⌊
n2/4− n + 1

⌋
.

Let f be a pure overlap labeling of G ′ using one label per edge.
Let y ′ be a vertex of Y in G ′ and let x ′ be its non-neighbor in X .
Extend f to G as follows: let f (y) = f (y ′) ∪ a (where a is a new
label) and add a to f (x ′). So ϕ(G ) ≤ Φ(G ′) + 1 ≤

⌊
n2/4− n + 2

⌋
.



Bipartite Graphs

Lemma: Let G be an n-vertex bipartite graph.
If n ≥ 7 and δ(G ) ≥ 2, then ϕ(G ) ≤ n2/4− n/2− 1.

Pf: Since ϕ(G ) ≤ |E (G )| − 1, we have |E (G )| > n2/4− n/2.
Let X and Y be the parts, with k = |X | ≤ |Y |. If G has a clone,
we can delete it. So at most one vertex of Y has degree k.

y

y ′

x ′

Thus |E (G )| ≤ (k − 1)(n − k) + 1,
and |X | = bn/2c and |Y | = dn/2e,
and some y ∈ Y has degree k
and all others have degree k − 1.

Delete y to form G ′. Now
Φ(G ′) ≤ |E (G ′)| =

⌊
n2/4− n/2 + 1

⌋
− bn/2c =

⌊
n2/4− n + 1

⌋
.

Let f be a pure overlap labeling of G ′ using one label per edge.
Let y ′ be a vertex of Y in G ′ and let x ′ be its non-neighbor in X .
Extend f to G as follows: let f (y) = f (y ′) ∪ a (where a is a new
label) and add a to f (x ′). So ϕ(G ) ≤ Φ(G ′) + 1 ≤

⌊
n2/4− n + 2

⌋
.



Bipartite Graphs

Lemma: Let G be an n-vertex bipartite graph.
If n ≥ 7 and δ(G ) ≥ 2, then ϕ(G ) ≤ n2/4− n/2− 1.

Pf: Since ϕ(G ) ≤ |E (G )| − 1, we have |E (G )| > n2/4− n/2.
Let X and Y be the parts, with k = |X | ≤ |Y |. If G has a clone,
we can delete it. So at most one vertex of Y has degree k.

y

y ′

x ′

Thus |E (G )| ≤ (k − 1)(n − k) + 1,
and |X | = bn/2c and |Y | = dn/2e,
and some y ∈ Y has degree k
and all others have degree k − 1.

Delete y to form G ′. Now
Φ(G ′) ≤ |E (G ′)| =

⌊
n2/4− n/2 + 1

⌋
− bn/2c =

⌊
n2/4− n + 1

⌋
.

Let f be a pure overlap labeling of G ′ using one label per edge.
Let y ′ be a vertex of Y in G ′ and let x ′ be its non-neighbor in X .
Extend f to G as follows: let f (y) = f (y ′) ∪ a (where a is a new
label) and add a to f (x ′). So ϕ(G ) ≤ Φ(G ′) + 1 ≤

⌊
n2/4− n + 2

⌋
.



Bipartite Graphs

Lemma: Let G be an n-vertex bipartite graph.
If n ≥ 7 and δ(G ) ≥ 2, then ϕ(G ) ≤ n2/4− n/2− 1.

Pf: Since ϕ(G ) ≤ |E (G )| − 1, we have |E (G )| > n2/4− n/2.
Let X and Y be the parts, with k = |X | ≤ |Y |. If G has a clone,
we can delete it. So at most one vertex of Y has degree k.

y

y ′

x ′

Thus |E (G )| ≤ (k − 1)(n − k) + 1,
and |X | = bn/2c and |Y | = dn/2e,
and some y ∈ Y has degree k
and all others have degree k − 1.

Delete y to form G ′. Now
Φ(G ′) ≤ |E (G ′)| =

⌊
n2/4− n/2 + 1

⌋
− bn/2c =

⌊
n2/4− n + 1

⌋
.

Let f be a pure overlap labeling of G ′ using one label per edge.

Let y ′ be a vertex of Y in G ′ and let x ′ be its non-neighbor in X .
Extend f to G as follows: let f (y) = f (y ′) ∪ a (where a is a new
label) and add a to f (x ′). So ϕ(G ) ≤ Φ(G ′) + 1 ≤

⌊
n2/4− n + 2

⌋
.



Bipartite Graphs

Lemma: Let G be an n-vertex bipartite graph.
If n ≥ 7 and δ(G ) ≥ 2, then ϕ(G ) ≤ n2/4− n/2− 1.

Pf: Since ϕ(G ) ≤ |E (G )| − 1, we have |E (G )| > n2/4− n/2.
Let X and Y be the parts, with k = |X | ≤ |Y |. If G has a clone,
we can delete it. So at most one vertex of Y has degree k.

y

y ′

x ′

Thus |E (G )| ≤ (k − 1)(n − k) + 1,
and |X | = bn/2c and |Y | = dn/2e,
and some y ∈ Y has degree k
and all others have degree k − 1.

Delete y to form G ′. Now
Φ(G ′) ≤ |E (G ′)| =

⌊
n2/4− n/2 + 1

⌋
− bn/2c =

⌊
n2/4− n + 1

⌋
.

Let f be a pure overlap labeling of G ′ using one label per edge.
Let y ′ be a vertex of Y in G ′ and let x ′ be its non-neighbor in X .

Extend f to G as follows: let f (y) = f (y ′) ∪ a (where a is a new
label) and add a to f (x ′). So ϕ(G ) ≤ Φ(G ′) + 1 ≤

⌊
n2/4− n + 2

⌋
.



Bipartite Graphs

Lemma: Let G be an n-vertex bipartite graph.
If n ≥ 7 and δ(G ) ≥ 2, then ϕ(G ) ≤ n2/4− n/2− 1.

Pf: Since ϕ(G ) ≤ |E (G )| − 1, we have |E (G )| > n2/4− n/2.
Let X and Y be the parts, with k = |X | ≤ |Y |. If G has a clone,
we can delete it. So at most one vertex of Y has degree k.

y

y ′

x ′

Thus |E (G )| ≤ (k − 1)(n − k) + 1,
and |X | = bn/2c and |Y | = dn/2e,
and some y ∈ Y has degree k
and all others have degree k − 1.

Delete y to form G ′. Now
Φ(G ′) ≤ |E (G ′)| =

⌊
n2/4− n/2 + 1

⌋
− bn/2c =

⌊
n2/4− n + 1

⌋
.

Let f be a pure overlap labeling of G ′ using one label per edge.
Let y ′ be a vertex of Y in G ′ and let x ′ be its non-neighbor in X .
Extend f to G as follows: let f (y) = f (y ′) ∪ a (where a is a new
label) and add a to f (x ′).

So ϕ(G ) ≤ Φ(G ′) + 1 ≤
⌊
n2/4− n + 2

⌋
.



Bipartite Graphs

Lemma: Let G be an n-vertex bipartite graph.
If n ≥ 7 and δ(G ) ≥ 2, then ϕ(G ) ≤ n2/4− n/2− 1.

Pf: Since ϕ(G ) ≤ |E (G )| − 1, we have |E (G )| > n2/4− n/2.
Let X and Y be the parts, with k = |X | ≤ |Y |. If G has a clone,
we can delete it. So at most one vertex of Y has degree k.

y

y ′

x ′

Thus |E (G )| ≤ (k − 1)(n − k) + 1,
and |X | = bn/2c and |Y | = dn/2e,
and some y ∈ Y has degree k
and all others have degree k − 1.

Delete y to form G ′. Now
Φ(G ′) ≤ |E (G ′)| =

⌊
n2/4− n/2 + 1

⌋
− bn/2c =

⌊
n2/4− n + 1

⌋
.

Let f be a pure overlap labeling of G ′ using one label per edge.
Let y ′ be a vertex of Y in G ′ and let x ′ be its non-neighbor in X .
Extend f to G as follows: let f (y) = f (y ′) ∪ a (where a is a new
label) and add a to f (x ′). So ϕ(G ) ≤ Φ(G ′) + 1 ≤

⌊
n2/4− n + 2

⌋
.



General n-vertex graphs

Theorem: If G is an n-vertex graph, then ϕ(G ) ≤ n2/4− n/2− 1.

Lemma: If G has a triangle T , then Φ(G ) ≤ Φ(G − T ) + n.
Lemma: If n ≥ 7, then Φ(G ) ≤ bn2/4c.

Pf sketch of theorem:

I G is bipartite

I G is triangle-free, but not bipartite
Consider shortest odd cycle C , with length 2k + 1
|E (G )| ≤ (2k + 1) + k(n − (2k + 1)) + (n − (2k + 1))2/4
Edge bound is good enough unless k = 2, . . .

I G has a triangle T
I G − T is bipartite
I G − T is triangle-free, but not bipartite
I G − T has a triangle T ′

Now Φ(G − T − T ′) ≤ b(n − 6)2/4c, so
Φ(G ) ≤ b(n − 6)2/4c+ 2n − 3 ≤ n2/4− n/2− 1
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