Overlap Number of Graphs

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Slides available on my preprint page Joint with Nitish Korula, Tim LeSaulnier, Kevin Milans Chris Stocker, Jenn Vandenbussche, and Doug West

> Atlanta Lecture Series V 26 February 2012

Def: A set overlaps another set if they intersect but neither contains the other.

Def: A set overlaps another set if they intersect but neither contains the other. An overlap representation f of a graph G assigns sets to V(G) so that $uv \in E(G)$ iff f(u) and f(v) overlap.

67 45
126 - 234
13
so
$$\varphi(G) < 7$$

Def: A set overlaps another set if they intersect but neither contains the other. An overlap representation f of a graph G assigns sets to V(G) so that $uv \in E(G)$ iff f(u) and f(v) overlap. The overlap number $\varphi(G)$ is the minimum size of f.

so $\varphi(G) \leq 7$

Def: A set overlaps another set if they intersect but neither contains the other. An overlap representation f of a graph G assigns sets to V(G) so that $uv \in E(G)$ iff f(u) and f(v) overlap. The overlap number $\varphi(G)$ is the minimum size of f.

Def: A pure overlap representation f of a graph G is an overlap representation where no set contains another. The pure overlap number $\Phi(G)$ is the minimum size of f.

Def: A set overlaps another set if they intersect but neither contains the other. An overlap representation f of a graph G assigns sets to V(G) so that $uv \in E(G)$ iff f(u) and f(v) overlap. The overlap number $\varphi(G)$ is the minimum size of f.

Def: A pure overlap representation f of a graph G is an overlap representation where no set contains another. The pure overlap number $\Phi(G)$ is the minimum size of f.

So $\varphi(G) \leq 5$, but $\Phi(G) \leq 6$.

Main Results

Thm 1: We have a linear-time algorithm to determine $\varphi(T)$ for every tree T. Corollary: $\varphi(T) \leq |T|$.

Main Results

Thm 1: We have a linear-time algorithm to determine $\varphi(T)$ for every tree T. Corollary: $\varphi(T) \leq |T|$.

Thm 2: If G is a planar *n*-vertex graph and $n \ge 5$, then $\varphi(G) \le 2n - 5$, which is sharp for n = 8 and $n \ge 10$.

Main Results

Thm 1: We have a linear-time algorithm to determine $\varphi(T)$ for every tree T. Corollary: $\varphi(T) \leq |T|$.

Thm 2: If G is a planar *n*-vertex graph and $n \ge 5$, then $\varphi(G) \le 2n - 5$, which is sharp for n = 8 and $n \ge 10$.

Thm 3: If G is an arbitrary *n*-vertex graph and $n \ge 14$, then $\varphi(G) \le n^2/4 - n/2 - 1$, which is sharp for even *n*.

Decomposition Bound: Let \mathcal{F} be a decomposition of graph G into cliques of order at most k, where $k \ge 2$. If $\delta(G) \ge k$, then $\Phi(G) \le |\mathcal{F}|$. In particular, $\delta(G) \ge 2$ implies $\Phi(G) \le |\mathcal{E}(G)|$.

Decomposition Bound: Let \mathcal{F} be a decomposition of graph G into cliques of order at most k, where $k \ge 2$. If $\delta(G) \ge k$, then $\Phi(G) \le |\mathcal{F}|$. In particular, $\delta(G) \ge 2$ implies $\Phi(G) \le |\mathcal{E}(G)|$.

Pf: Give each clique in \mathcal{F} its own label, and give each vertex all the labels of cliques that contain it.

Decomposition Bound: Let \mathcal{F} be a decomposition of graph G into cliques of order at most k, where $k \ge 2$. If $\delta(G) \ge k$, then $\Phi(G) \le |\mathcal{F}|$. In particular, $\delta(G) \ge 2$ implies $\Phi(G) \le |\mathcal{E}(G)|$.

Pf: Give each clique in \mathcal{F} its own label, and give each vertex all the labels of cliques that contain it.

Prop: If G is triangle-free, then $\Phi(G) \ge |E(G)|$, and $\Phi(G) = |E(G)|$ when $\delta(G) \ge 2$.

Decomposition Bound: Let \mathcal{F} be a decomposition of graph G into cliques of order at most k, where $k \ge 2$. If $\delta(G) \ge k$, then $\Phi(G) \le |\mathcal{F}|$. In particular, $\delta(G) \ge 2$ implies $\Phi(G) \le |\mathcal{E}(G)|$.

Pf: Give each clique in \mathcal{F} its own label, and give each vertex all the labels of cliques that contain it.

Prop: If G is triangle-free, then $\Phi(G) \ge |E(G)|$, and $\Phi(G) = |E(G)|$ when $\delta(G) \ge 2$.

Pf: We can't do better than one label on each edge.

Decomposition Bound: Let \mathcal{F} be a decomposition of graph G into cliques of order at most k, where $k \ge 2$. If $\delta(G) \ge k$, then $\Phi(G) \le |\mathcal{F}|$. In particular, $\delta(G) \ge 2$ implies $\Phi(G) \le |\mathcal{E}(G)|$.

Pf: Give each clique in \mathcal{F} its own label, and give each vertex all the labels of cliques that contain it.

Prop: If G is triangle-free, then $\Phi(G) \ge |E(G)|$, and $\Phi(G) = |E(G)|$ when $\delta(G) \ge 2$.

Pf: We can't do better than one label on each edge.

Deletion Bound: If v is a vertex with $d(v) \le 2$ in a graph G with at least 3 vertices, then $\Phi(G) \le \Phi(G - v) + 2$. If $d(v) \le 1$, then $\varphi(G) \le \varphi(G - v) + 2$.

Decomposition Bound: Let \mathcal{F} be a decomposition of graph G into cliques of order at most k, where $k \ge 2$. If $\delta(G) \ge k$, then $\Phi(G) \le |\mathcal{F}|$. In particular, $\delta(G) \ge 2$ implies $\Phi(G) \le |\mathcal{E}(G)|$.

Pf: Give each clique in \mathcal{F} its own label, and give each vertex all the labels of cliques that contain it.

Prop: If G is triangle-free, then $\Phi(G) \ge |E(G)|$, and $\Phi(G) = |E(G)|$ when $\delta(G) \ge 2$.

Pf: We can't do better than one label on each edge.

Deletion Bound: If v is a vertex with $d(v) \le 2$ in a graph G with at least 3 vertices, then $\Phi(G) \le \Phi(G - v) + 2$. If $d(v) \le 1$, then $\varphi(G) \le \varphi(G - v) + 2$.

Pf: Easy for Φ , and not too hard for φ .

Edge Bound: If $\delta(G) \ge 2$ and $G \ne K_3$, then $\varphi(G) \le |E(G)| - 1$.

Edge Bound: If $\delta(G) \ge 2$ and $G \ne K_3$, then $\varphi(G) \le |E(G)| - 1$. **Pf:** Slightly modify a pure overlap labeling of size |E(G)|.

Edge Bound: If $\delta(G) \ge 2$ and $G \ne K_3$, then $\varphi(G) \le |E(G)| - 1$. **Pf:** Slightly modify a pure overlap labeling of size |E(G)|.

Def: A star-cutset in a graph G is a separating set S containing a vertex x adjacent to all of S - x.

Edge Bound: If $\delta(G) \ge 2$ and $G \ne K_3$, then $\varphi(G) \le |E(G)| - 1$. **Pf:** Slightly modify a pure overlap labeling of size |E(G)|.

Def: A star-cutset in a graph G is a separating set S containing a vertex x adjacent to all of S - x.

Edge Lower Bound: If G is a triangle-free graph with no star-cutset, then $\varphi(G) \ge |E(G)| - 1$.

Edge Bound: If $\delta(G) \ge 2$ and $G \ne K_3$, then $\varphi(G) \le |E(G)| - 1$. **Pf:** Slightly modify a pure overlap labeling of size |E(G)|.

Def: A star-cutset in a graph G is a separating set S containing a vertex x adjacent to all of S - x.

Edge Lower Bound: If G is a triangle-free graph with no star-cutset, then $\varphi(G) \ge |E(G)| - 1$.

Pf idea: We can't do anything better than in the Edge Bound.

Edge Bound: If $\delta(G) \ge 2$ and $G \ne K_3$, then $\varphi(G) \le |E(G)| - 1$. **Pf:** Slightly modify a pure overlap labeling of size |E(G)|.

Def: A star-cutset in a graph G is a separating set S containing a vertex x adjacent to all of S - x.

Edge Lower Bound: If G is a triangle-free graph with no star-cutset, then $\varphi(G) \ge |E(G)| - 1$.

Pf idea: We can't do anything better than in the Edge Bound.

Cor. 1 If G is a triangle-free plane graph in which every face has length 4, and G has no star-cutset, then $\varphi(G) = 2n - 5$.

Edge Bound: If $\delta(G) \ge 2$ and $G \ne K_3$, then $\varphi(G) \le |E(G)| - 1$. **Pf:** Slightly modify a pure overlap labeling of size |E(G)|.

Def: A star-cutset in a graph G is a separating set S containing a vertex x adjacent to all of S - x.

Edge Lower Bound: If G is a triangle-free graph with no star-cutset, then $\varphi(G) \ge |E(G)| - 1$.

Pf idea: We can't do anything better than in the Edge Bound.

Cor. 1 If G is a triangle-free plane graph in which every face has length 4, and G has no star-cutset, then $\varphi(G) = 2n - 5$.

Edge Bound: If $\delta(G) \ge 2$ and $G \ne K_3$, then $\varphi(G) \le |E(G)| - 1$. **Pf:** Slightly modify a pure overlap labeling of size |E(G)|.

Def: A star-cutset in a graph G is a separating set S containing a vertex x adjacent to all of S - x.

Edge Lower Bound: If G is a triangle-free graph with no star-cutset, then $\varphi(G) \ge |E(G)| - 1$.

Pf idea: We can't do anything better than in the Edge Bound.

Cor. 1 If G is a triangle-free plane graph in which every face has length 4, and G has no star-cutset, then $\varphi(G) = 2n - 5$.

Cor. 2 For even $n \ge 6$, if we obtain G_n by deleting a matching of size n/2 from $\mathcal{K}_{n/2,n/2}$, then $\varphi(G_n) = n^2/4 - n/2 - 1$.

Edge Bound: If $\delta(G) \ge 2$ and $G \ne K_3$, then $\varphi(G) \le |E(G)| - 1$. **Pf:** Slightly modify a pure overlap labeling of size |E(G)|.

Def: A star-cutset in a graph G is a separating set S containing a vertex x adjacent to all of S - x.

Edge Lower Bound: If G is a triangle-free graph with no star-cutset, then $\varphi(G) \ge |E(G)| - 1$.

Pf idea: We can't do anything better than in the Edge Bound.

Cor. 1 If G is a triangle-free plane graph in which every face has length 4, and G has no star-cutset, then $\varphi(G) = 2n - 5$.

Cor. 2 For even $n \ge 6$, if we obtain G_n by deleting a matching of size n/2 from $\mathcal{K}_{n/2,n/2}$, then $\varphi(G_n) = n^2/4 - n/2 - 1$.

Lemma 1: If G is planar with $n \ge 5$ vertices, then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Lemma 1: If G is planar with $n \ge 5$ vertices, then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles.

Lemma 1: If G is planar with $n \ge 5$ vertices, then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G.

Lemma 1: If G is planar with $n \ge 5$ vertices, then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G.

If t = 0, then Euler's formula implies the claim.

Lemma 1: If G is planar with $n \ge 5$ vertices, then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G.

If t = 0, then Euler's formula implies the claim. So suppose $t \ge 1$.
Lemma 1: If G is planar with $n \ge 5$ vertices, then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G.

If t = 0, then Euler's formula implies the claim. So suppose $t \ge 1$.

Lemma 1: If G is planar with $n \ge 5$ vertices, then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G.

If t = 0, then Euler's formula implies the claim. So suppose $t \ge 1$.

Case 1: G' has a facial (non-4)-cycle. G G' Now $|\mathcal{F}'| \le 2(n+1) - 5 = 2n - 3$, so $|\mathcal{F}| \le (2n-3) - 3 + 1 = 2n - 5$.

Lemma 1: If G is planar with $n \ge 5$ vertices, then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G.

If t = 0, then Euler's formula implies the claim. So suppose $t \ge 1$.

Case 1: G' has a facial (non-4)-cycle. Now $|\mathcal{F}'| \le 2(n+1) - 5 = 2n - 3$, so $|\mathcal{F}| \le (2n - 3) - 3 + 1 = 2n - 5$. **Case 2:** G' has only facial 4-cycles.

Lemma 1: If G is planar with $n \ge 5$ vertices, then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G.

If t = 0, then Euler's formula implies the claim. So suppose $t \ge 1$.

Case 1: G' has a facial (non-4)-cycle. Now $|\mathcal{F}'| \le 2(n+1) - 5 = 2n - 3$, so $|\mathcal{F}| \le (2n - 3) - 3 + 1 = 2n - 5$. **Case 2:** G' has only facial 4-cycles.

Lemma 1: If G is planar with $n \ge 5$ vertices, then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G.

If t = 0, then Euler's formula implies the claim. So suppose $t \ge 1$.

Case 1: G' has a facial (non-4)-cycle. Now $|\mathcal{F}'| \le 2(n+1) - 5 = 2n - 3$, so $|\mathcal{F}| \le (2n-3) - 3 + 1 = 2n - 5$. **Case 2:** G' has only facial 4-cycles.

Lemma 1: If G is planar with $n \ge 5$ vertices, then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G.

If t = 0, then Euler's formula implies the claim. So suppose $t \ge 1$.

Case 1: G' has a facial (non-4)-cycle. Now $|\mathcal{F}'| \leq 2(n+1) - 5 = 2n - 3$, so $|\mathcal{F}| \leq (2n-3) - 3 + 1 = 2n - 5$. **Case 2:** G' has only facial 4-cycles. Now $|\mathcal{F}'| = 2(n+1) - 4 = 2n - 2$,

Lemma 1: If G is planar with $n \ge 5$ vertices, then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G.

If t = 0, then Euler's formula implies the claim. So suppose $t \ge 1$.

Case 1: G' has a facial (non-4)-cycle. Now $|\mathcal{F}'| \le 2(n+1) - 5 = 2n - 3$, so $|\mathcal{F}| \le (2n-3) - 3 + 1 = 2n - 5$. **Case 2:** G' has only facial 4-cycles. Now $|\mathcal{F}'| = 2(n+1) - 4 = 2n - 2$, so $|\mathcal{F}| = (2n-2) - 9 + 3 = 2n - 8$.

Lemma 1: If G is planar with $n \ge 5$ vertices, then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G.

If t = 0, then Euler's formula implies the claim. So suppose $t \ge 1$.

Case 1: G' has a facial (non-4)-cycle. Now $|\mathcal{F}'| \le 2(n+1) - 5 = 2n - 3$, so $|\mathcal{F}| \le (2n-3) - 3 + 1 = 2n - 5$. **Case 2:** G' has only facial 4-cycles. Now $|\mathcal{F}'| = 2(n+1) - 4 = 2n - 2$, so $|\mathcal{F}| = (2n-2) - 9 + 3 = 2n - 8$. **Case 3:** Or 2 faces share an edge,

 \Leftrightarrow

Lemma 1: If G is planar with $n \ge 5$ vertices, then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G.

If t = 0, then Euler's formula implies the claim. So suppose $t \ge 1$.

Case 1: G' has a facial (non-4)-cycle. Now $|\mathcal{F}'| \leq 2(n+1) - 5 = 2n - 3$, so $|\mathcal{F}| \leq (2n-3) - 3 + 1 = 2n - 5$. **Case 2:** G' has only facial 4-cycles. Now $|\mathcal{F}'| = 2(n+1) - 4 = 2n - 2$, so $|\mathcal{F}| = (2n-2) - 9 + 3 = 2n - 8$. **Case 3:** Or 2 faces share an edge,

Lemma 1: If G is planar with $n \ge 5$ vertices, then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G.

If t = 0, then Euler's formula implies the claim. So suppose $t \ge 1$.

Case 1: G' has a facial (non-4)-cycle.
Now
$$|\mathcal{F}'| \leq 2(n+1) - 5 = 2n - 3$$
,
so $|\mathcal{F}| \leq (2n-3) - 3 + 1 = 2n - 5$.
Case 2: G' has only facial 4-cycles.
Now $|\mathcal{F}'| = 2(n+1) - 4 = 2n - 2$,
so $|\mathcal{F}| = (2n-2) - 9 + 3 = 2n - 8$.
Case 3: Or 2 faces share an edge,
so $|\mathcal{F}| \leq |\mathcal{F}'| - 8 + 4 = 2n - 6$.

Lemma 1: If G is planar with n vertices and $n \ge 5$ then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Lemma 1: If G is planar with n vertices and $n \ge 5$ then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Cor: If G is planar, $n \ge 5$, and $\delta(G) \ge 3$, then $\Phi(G) \le 2n-5$, unless G has 2n-4 edges and every face is a 4-cycle.

Lemma 1: If G is planar with n vertices and $n \ge 5$ then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Cor: If G is planar, $n \ge 5$, and $\delta(G) \ge 3$, then $\Phi(G) \le 2n-5$, unless G has 2n-4 edges and every face is a 4-cycle.

Pf: This follows from Lemma 1 and the Decomposition Bound.

Lemma 1: If G is planar with n vertices and $n \ge 5$ then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Cor: If G is planar, $n \ge 5$, and $\delta(G) \ge 3$, then $\Phi(G) \le 2n-5$, unless G has 2n-4 edges and every face is a 4-cycle.

Pf: This follows from Lemma 1 and the Decomposition Bound.

Thm 2: If G is a planar *n*-vertex graph and $n \ge 5$, then $\varphi(G) \le 2n - 5$, which is sharp for n = 8 and $n \ge 10$.

Lemma 1: If G is planar with n vertices and $n \ge 5$ then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Cor: If G is planar, $n \ge 5$, and $\delta(G) \ge 3$, then $\Phi(G) \le 2n-5$, unless G has 2n-4 edges and every face is a 4-cycle.

Pf: This follows from Lemma 1 and the Decomposition Bound.

Thm 2: If *G* is a planar *n*-vertex graph and $n \ge 5$, then $\varphi(G) \le 2n - 5$, which is sharp for n = 8 and $n \ge 10$. **Pf sketch:** Use the Deletion Bound $(\Phi(G) \le \Phi(G - v) + 2$ if $d(v) \le 2)$ to reduce to $\delta(G) \ge 3$, then invoke the corollary above.

Lemma 1: If G is planar with n vertices and $n \ge 5$ then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Cor: If G is planar, $n \ge 5$, and $\delta(G) \ge 3$, then $\Phi(G) \le 2n-5$, unless G has 2n-4 edges and every face is a 4-cycle.

Pf: This follows from Lemma 1 and the Decomposition Bound.

Thm 2: If G is a planar *n*-vertex graph and $n \ge 5$, then $\varphi(G) \le 2n - 5$, which is sharp for n = 8 and $n \ge 10$. **Pf sketch:** Use the Deletion Bound $(\Phi(G) \le \Phi(G - v) + 2$ if $d(v) \le 2)$ to reduce to $\delta(G) \ge 3$, then invoke the corollary above. If G consists of 2n - 4 edges, then $\varphi(G) \le |E(G)| - 1 = 2n - 5$.

Lemma 1: If G is planar with n vertices and $n \ge 5$ then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Cor: If G is planar, $n \ge 5$, and $\delta(G) \ge 3$, then $\Phi(G) \le 2n-5$, unless G has 2n-4 edges and every face is a 4-cycle.

Pf: This follows from Lemma 1 and the Decomposition Bound.

Thm 2: If G is a planar *n*-vertex graph and $n \ge 5$, then $\varphi(G) \le 2n - 5$, which is sharp for n = 8 and $n \ge 10$. **Pf sketch:** Use the Deletion Bound $(\Phi(G) \le \Phi(G - v) + 2$ if $d(v) \le 2)$ to reduce to $\delta(G) \ge 3$, then invoke the corollary above. If G consists of 2n - 4 edges, then $\varphi(G) \le |E(G)| - 1 = 2n - 5$. What's missing?

Lemma 1: If G is planar with n vertices and $n \ge 5$ then G decomposes into at most 2n - 5 edges and facial triangles unless every face is a 4-cycle (then G consists of 2n - 4 edges).

Cor: If G is planar, $n \ge 5$, and $\delta(G) \ge 3$, then $\Phi(G) \le 2n-5$, unless G has 2n-4 edges and every face is a 4-cycle.

Pf: This follows from Lemma 1 and the Decomposition Bound.

Thm 2: If G is a planar *n*-vertex graph and $n \ge 5$, then $\varphi(G) \le 2n - 5$, which is sharp for n = 8 and $n \ge 10$. **Pf sketch:** Use the Deletion Bound $(\Phi(G) \le \Phi(G - v) + 2$ if $d(v) \le 2)$ to reduce to $\delta(G) \ge 3$, then invoke the corollary above. If G consists of 2n - 4 edges, then $\varphi(G) \le |E(G)| - 1 = 2n - 5$. What's missing? Lot's of messy base cases.

Lemma: Let G be an *n*-vertex bipartite graph. If $n \ge 7$ and $\delta(G) \ge 2$, then $\varphi(G) \le n^2/4 - n/2 - 1$.

Lemma: Let G be an *n*-vertex bipartite graph. If $n \ge 7$ and $\delta(G) \ge 2$, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Pf:** Since $\varphi(G) \le |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$.

Lemma: Let G be an *n*-vertex bipartite graph. If $n \ge 7$ and $\delta(G) \ge 2$, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Pf:** Since $\varphi(G) \le |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$. Let X and Y be the parts, with $k = |X| \le |Y|$. If G has a clone, we can delete it. So at most one vertex of Y has degree k.

Lemma: Let *G* be an *n*-vertex bipartite graph. If $n \ge 7$ and $\delta(G) \ge 2$, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Pf:** Since $\varphi(G) \le |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$. Let *X* and *Y* be the parts, with $k = |X| \le |Y|$. If *G* has a clone, we can delete it. So at most one vertex of *Y* has degree *k*.

Thus $|E(G)| \le (k-1)(n-k) + 1$,

Lemma: Let *G* be an *n*-vertex bipartite graph. If $n \ge 7$ and $\delta(G) \ge 2$, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Pf:** Since $\varphi(G) \le |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$. Let *X* and *Y* be the parts, with $k = |X| \le |Y|$. If *G* has a clone, we can delete it. So at most one vertex of *Y* has degree *k*.

Thus $|E(G)| \le (k-1)(n-k)+1$, and $|X| = \lfloor n/2 \rfloor$ and $|Y| = \lceil n/2 \rceil$,

Lemma: Let *G* be an *n*-vertex bipartite graph. If $n \ge 7$ and $\delta(G) \ge 2$, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Pf:** Since $\varphi(G) \le |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$. Let *X* and *Y* be the parts, with $k = |X| \le |Y|$. If *G* has a clone, we can delete it. So at most one vertex of *Y* has degree *k*.

Thus $|E(G)| \le (k-1)(n-k)+1$, and $|X| = \lfloor n/2 \rfloor$ and $|Y| = \lceil n/2 \rceil$, and some $y \in Y$ has degree kand all others have degree k-1.

Lemma: Let *G* be an *n*-vertex bipartite graph. If $n \ge 7$ and $\delta(G) \ge 2$, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Pf:** Since $\varphi(G) \le |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$. Let *X* and *Y* be the parts, with $k = |X| \le |Y|$. If *G* has a clone, we can delete it. So at most one vertex of *Y* has degree *k*.

Thus $|E(G)| \le (k-1)(n-k)+1$, and $|X| = \lfloor n/2 \rfloor$ and $|Y| = \lceil n/2 \rceil$, and some $y \in Y$ has degree kand all others have degree k-1.

Lemma: Let *G* be an *n*-vertex bipartite graph. If $n \ge 7$ and $\delta(G) \ge 2$, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Pf:** Since $\varphi(G) \le |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$. Let *X* and *Y* be the parts, with $k = |X| \le |Y|$. If *G* has a clone, we can delete it. So at most one vertex of *Y* has degree *k*.

Thus $|E(G)| \le (k-1)(n-k)+1$, and $|X| = \lfloor n/2 \rfloor$ and $|Y| = \lceil n/2 \rceil$, and some $y \in Y$ has degree kand all others have degree k-1.

Delete y to form G'. Now $\Phi(G') \leq |E(G')| = \lfloor n^2/4 - n/2 + 1 \rfloor - \lfloor n/2 \rfloor = \lfloor n^2/4 - n + 1 \rfloor.$

Lemma: Let *G* be an *n*-vertex bipartite graph. If $n \ge 7$ and $\delta(G) \ge 2$, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Pf:** Since $\varphi(G) \le |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$. Let *X* and *Y* be the parts, with $k = |X| \le |Y|$. If *G* has a clone, we can delete it. So at most one vertex of *Y* has degree *k*.

Thus $|E(G)| \le (k-1)(n-k)+1$, and $|X| = \lfloor n/2 \rfloor$ and $|Y| = \lceil n/2 \rceil$, and some $y \in Y$ has degree kand all others have degree k-1.

Delete y to form G'. Now $\Phi(G') \leq |E(G')| = \lfloor n^2/4 - n/2 + 1 \rfloor - \lfloor n/2 \rfloor = \lfloor n^2/4 - n + 1 \rfloor$. Let f be a pure overlap labeling of G' using one label per edge.

Lemma: Let *G* be an *n*-vertex bipartite graph. If $n \ge 7$ and $\delta(G) \ge 2$, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Pf:** Since $\varphi(G) \le |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$. Let *X* and *Y* be the parts, with $k = |X| \le |Y|$. If *G* has a clone, we can delete it. So at most one vertex of *Y* has degree *k*.

Thus $|E(G)| \le (k-1)(n-k)+1$, and $|X| = \lfloor n/2 \rfloor$ and $|Y| = \lceil n/2 \rceil$, and some $y \in Y$ has degree kand all others have degree k-1.

Delete y to form G'. Now $\Phi(G') \le |E(G')| = \lfloor n^2/4 - n/2 + 1 \rfloor - \lfloor n/2 \rfloor = \lfloor n^2/4 - n + 1 \rfloor.$ Let f be a pure overlap labeling of G' using one label per edge. Let y' be a vertex of Y in G' and let x' be its non-neighbor in X.

Lemma: Let *G* be an *n*-vertex bipartite graph. If $n \ge 7$ and $\delta(G) \ge 2$, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Pf:** Since $\varphi(G) \le |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$. Let *X* and *Y* be the parts, with $k = |X| \le |Y|$. If *G* has a clone, we can delete it. So at most one vertex of *Y* has degree *k*.

Thus $|E(G)| \le (k-1)(n-k)+1$, and $|X| = \lfloor n/2 \rfloor$ and $|Y| = \lceil n/2 \rceil$, and some $y \in Y$ has degree kand all others have degree k-1.

Delete y to form G'. Now $\Phi(G') \leq |E(G')| = \lfloor n^2/4 - n/2 + 1 \rfloor - \lfloor n/2 \rfloor = \lfloor n^2/4 - n + 1 \rfloor$. Let f be a pure overlap labeling of G' using one label per edge. Let y' be a vertex of Y in G' and let x' be its non-neighbor in X. Extend f to G as follows: let $f(y) = f(y') \cup a$ (where a is a new label) and add a to f(x').

Lemma: Let *G* be an *n*-vertex bipartite graph. If $n \ge 7$ and $\delta(G) \ge 2$, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Pf:** Since $\varphi(G) \le |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$. Let *X* and *Y* be the parts, with $k = |X| \le |Y|$. If *G* has a clone, we can delete it. So at most one vertex of *Y* has degree *k*.

Thus $|E(G)| \le (k-1)(n-k)+1$, and $|X| = \lfloor n/2 \rfloor$ and $|Y| = \lceil n/2 \rceil$, and some $y \in Y$ has degree kand all others have degree k-1.

Delete y to form G'. Now $\Phi(G') \leq |E(G')| = \lfloor n^2/4 - n/2 + 1 \rfloor - \lfloor n/2 \rfloor = \lfloor n^2/4 - n + 1 \rfloor$. Let f be a pure overlap labeling of G' using one label per edge. Let y' be a vertex of Y in G' and let x' be its non-neighbor in X. Extend f to G as follows: let $f(y) = f(y') \cup a$ (where a is a new label) and add a to f(x'). So $\varphi(G) \leq \Phi(G') + 1 \leq \lfloor n^2/4 - n + 2 \rfloor$.

Theorem: If G is an *n*-vertex graph, then $\varphi(G) \leq n^2/4 - n/2 - 1$.

Theorem: If G is an *n*-vertex graph, then $\varphi(G) \le n^2/4 - n/2 - 1$. Lemma: If G has a triangle T, then $\Phi(G) \le \Phi(G - T) + n$.

Theorem: If G is an *n*-vertex graph, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Lemma:** If G has a triangle T, then $\Phi(G) \le \Phi(G - T) + n$. **Lemma:** If $n \ge 7$, then $\Phi(G) \le \lfloor n^2/4 \rfloor$.

Theorem: If G is an *n*-vertex graph, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Lemma:** If G has a triangle T, then $\Phi(G) \le \Phi(G - T) + n$. **Lemma:** If $n \ge 7$, then $\Phi(G) \le \lfloor n^2/4 \rfloor$.

Pf sketch of theorem:

Theorem: If G is an *n*-vertex graph, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Lemma:** If G has a triangle T, then $\Phi(G) \le \Phi(G - T) + n$. **Lemma:** If $n \ge 7$, then $\Phi(G) \le \lfloor n^2/4 \rfloor$.

Pf sketch of theorem:

► G is bipartite

Theorem: If G is an *n*-vertex graph, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Lemma:** If G has a triangle T, then $\Phi(G) \le \Phi(G - T) + n$. **Lemma:** If $n \ge 7$, then $\Phi(G) \le \lfloor n^2/4 \rfloor$.

Pf sketch of theorem:

- G is bipartite
- *G* is triangle-free, but not bipartite
Theorem: If G is an *n*-vertex graph, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Lemma:** If G has a triangle T, then $\Phi(G) \le \Phi(G - T) + n$. **Lemma:** If $n \ge 7$, then $\Phi(G) \le \lfloor n^2/4 \rfloor$.

- ► G is bipartite
- ► G is triangle-free, but not bipartite Consider shortest odd cycle C, with length 2k + 1

Theorem: If G is an *n*-vertex graph, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Lemma:** If G has a triangle T, then $\Phi(G) \le \Phi(G - T) + n$. **Lemma:** If $n \ge 7$, then $\Phi(G) \le \lfloor n^2/4 \rfloor$.

- ► G is bipartite
- G is triangle-free, but not bipartite Consider shortest odd cycle C, with length 2k + 1 |E(G)| ≤ (2k + 1) + k(n - (2k + 1)) + (n - (2k + 1))²/4

Theorem: If G is an *n*-vertex graph, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Lemma:** If G has a triangle T, then $\Phi(G) \le \Phi(G - T) + n$. **Lemma:** If $n \ge 7$, then $\Phi(G) \le \lfloor n^2/4 \rfloor$.

Pf sketch of theorem:

► G is bipartite

 G is triangle-free, but not bipartite Consider shortest odd cycle C, with length 2k + 1 |E(G)| ≤ (2k + 1) + k(n - (2k + 1)) + (n - (2k + 1))²/4 Edge bound is good enough unless k = 2, ...

Theorem: If G is an *n*-vertex graph, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Lemma:** If G has a triangle T, then $\Phi(G) \le \Phi(G - T) + n$. **Lemma:** If $n \ge 7$, then $\Phi(G) \le \lfloor n^2/4 \rfloor$.

- ► G is bipartite
- G is triangle-free, but not bipartite Consider shortest odd cycle C, with length 2k + 1
 |E(G)| ≤ (2k + 1) + k(n - (2k + 1)) + (n - (2k + 1))²/4
 Edge bound is good enough unless k = 2, ...
- ► G has a triangle T

Theorem: If G is an *n*-vertex graph, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Lemma:** If G has a triangle T, then $\Phi(G) \le \Phi(G - T) + n$. **Lemma:** If $n \ge 7$, then $\Phi(G) \le \lfloor n^2/4 \rfloor$.

- G is bipartite
- G is triangle-free, but not bipartite Consider shortest odd cycle C, with length 2k + 1
 |E(G)| ≤ (2k + 1) + k(n - (2k + 1)) + (n - (2k + 1))²/4
 Edge bound is good enough unless k = 2, ...
- G has a triangle T
 - G T is bipartite

Theorem: If G is an *n*-vertex graph, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Lemma:** If G has a triangle T, then $\Phi(G) \le \Phi(G - T) + n$. **Lemma:** If $n \ge 7$, then $\Phi(G) \le \lfloor n^2/4 \rfloor$.

- G is bipartite
- G is triangle-free, but not bipartite Consider shortest odd cycle C, with length 2k + 1
 |E(G)| ≤ (2k + 1) + k(n - (2k + 1)) + (n - (2k + 1))²/4
 Edge bound is good enough unless k = 2, ...
- G has a triangle T
 - G T is bipartite
 - G T is triangle-free, but not bipartite

Theorem: If G is an *n*-vertex graph, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Lemma:** If G has a triangle T, then $\Phi(G) \le \Phi(G - T) + n$. **Lemma:** If $n \ge 7$, then $\Phi(G) \le \lfloor n^2/4 \rfloor$.

- G is bipartite
- G is triangle-free, but not bipartite Consider shortest odd cycle C, with length 2k + 1
 |E(G)| ≤ (2k + 1) + k(n - (2k + 1)) + (n - (2k + 1))²/4
 Edge bound is good enough unless k = 2, ...
- G has a triangle T
 - G T is bipartite
 - G T is triangle-free, but not bipartite
 - G T has a triangle T'

Theorem: If G is an *n*-vertex graph, then $\varphi(G) \le n^2/4 - n/2 - 1$. **Lemma:** If G has a triangle T, then $\Phi(G) \le \Phi(G - T) + n$. **Lemma:** If $n \ge 7$, then $\Phi(G) \le \lfloor n^2/4 \rfloor$.

- G is bipartite
- G is triangle-free, but not bipartite Consider shortest odd cycle C, with length 2k + 1
 |E(G)| ≤ (2k + 1) + k(n - (2k + 1)) + (n - (2k + 1))²/4
 Edge bound is good enough unless k = 2, ...
- G has a triangle T
 - G T is bipartite
 - G T is triangle-free, but not bipartite
 - ▶ G T has a triangle T'Now $\Phi(G - T - T') \leq \lfloor (n-6)^2/4 \rfloor$, so $\Phi(G) \leq \lfloor (n-6)^2/4 \rfloor + 2n - 3 \leq n^2/4 - n/2 - 1$