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Def: A pure overlap representation f of a graph G is an overlap
representation where no set contains another. The pure overlap
number ®(G) is the minimum size of f.

So p(G) < 5, but B(G) < 6.



Main Results

Thm 1: We have a linear-time algorithm to determine ( T) for
every tree T. Corollary: ¢(T) < |T].



Main Results

Thm 1: We have a linear-time algorithm to determine ( T) for
every tree T. Corollary: ¢(T) < |T].

Thm 2: If G is a planar n-vertex graph and n > 5, then
©(G) < 2n — 5, which is sharp for n = 8 and n > 10.



Main Results

Thm 1: We have a linear-time algorithm to determine ( T) for
every tree T. Corollary: ¢(T) < |T].

Thm 2: If G is a planar n-vertex graph and n > 5, then
©(G) < 2n — 5, which is sharp for n = 8 and n > 10.

Thm 3: If G is an arbitrary n-vertex graph and n > 14, then
©(G) < n?/4 —n/2 — 1, which is sharp for even n.
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Pf: Give each clique in F its own label, and give each vertex all
the labels of cliques that contain it.

Prop: If G is triangle-free, then ©(G) > |E(G)|,
and ®(G) = |E(G)| when 6(G) > 2.

Pf: We can't do better than one label on each edge.

Deletion Bound: If v is a vertex with d(v) < 2 in a graph G with
at least 3 vertices, then ®(G) < ®(G — v) + 2. If d(v) < 1, then
AG) < (G —v)+2.

Pf: Easy for ®, and not too hard for ¢.
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Lemma 1: If G is planar with n > 5 vertices, then G decomposes
into at most 2n — 5 edges and facial triangles unless every face is a
4-cycle (then G consists of 2n — 4 edges).

Pf: Let F denote our decomposition of G into edges and triangles.
We induct on t, the number of facial triangles in G.
If t =0, then Euler's formula implies the claim. So suppose t > 1.

Case 1: G’ has a facial (non-4)-cycle. G G’
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Now |F'| =2(n+1) —4=2n—2,
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Case 3: Or 2 faces share an edge,
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Let f be a pure overlap labeling of G’ using one label per edge.
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Now (G — T — T') < [(n—6)?/4], so
®(G) < [(n—6)%/4] +2n—3<n?/4—n/2 -1
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