Graphs with $\chi = \Delta$ have big cliques

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Joint with Landon Rabern Slides available on my webpage

Discrete Math Days of the Northeast Wesleyan University, 5 October 2013

Prop: For all *G* we have $\chi \leq \Delta + 1$.

Prop: For all *G* we have $\chi \leq \Delta + 1$. **Thm** [Brooks 1941]: If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

```
Prop: For all G we have \chi \leq \Delta + 1.

Thm [Brooks 1941]:

If \Delta \geq 3 and \omega \leq \Delta then \chi \leq \Delta.

Borodin-Kostochka Conj. (B-K) [1977]:

If \Delta \geq 9 and \omega \leq \Delta - 1 then \chi \leq \Delta - 1.
```

Why $\Delta \ge 9$?

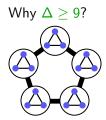
```
Prop: For all G we have \chi \leq \Delta + 1.

Thm [Brooks 1941]:

If \Delta \geq 3 and \omega \leq \Delta then \chi \leq \Delta.

Borodin-Kostochka Conj. (B-K) [1977]:

If \Delta \geq 9 and \omega \leq \Delta - 1 then \chi \leq \Delta - 1.
```



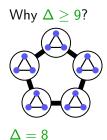
```
Prop: For all G we have \chi \leq \Delta + 1.

Thm [Brooks 1941]:

If \Delta \geq 3 and \omega \leq \Delta then \chi \leq \Delta.

Borodin-Kostochka Conj. (B-K) [1977]:

If \Delta \geq 9 and \omega \leq \Delta - 1 then \chi \leq \Delta - 1.
```



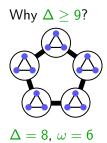
```
Prop: For all G we have \chi \leq \Delta + 1.

Thm [Brooks 1941]:

If \Delta \geq 3 and \omega \leq \Delta then \chi \leq \Delta.

Borodin-Kostochka Conj. (B-K) [1977]:

If \Delta \geq 9 and \omega \leq \Delta - 1 then \chi \leq \Delta - 1.
```



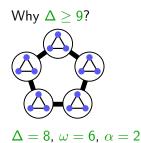
```
Prop: For all G we have \chi \leq \Delta + 1.

Thm [Brooks 1941]:

If \Delta \geq 3 and \omega \leq \Delta then \chi \leq \Delta.

Borodin-Kostochka Conj. (B-K) [1977]:

If \Delta \geq 9 and \omega \leq \Delta - 1 then \chi \leq \Delta - 1.
```



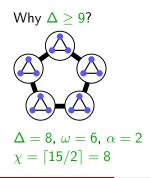
```
Prop: For all G we have \chi \leq \Delta + 1.

Thm [Brooks 1941]:

If \Delta \geq 3 and \omega \leq \Delta then \chi \leq \Delta.

Borodin-Kostochka Conj. (B-K) [1977]:

If \Delta \geq 9 and \omega \leq \Delta - 1 then \chi \leq \Delta - 1.
```



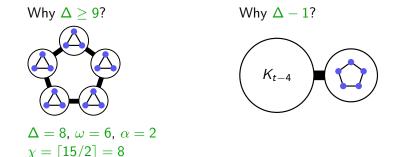
```
Prop: For all G we have \chi \leq \Delta + 1.

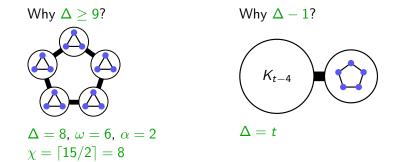
Thm [Brooks 1941]:

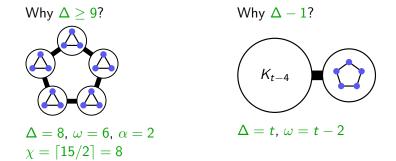
If \Delta \geq 3 and \omega \leq \Delta then \chi \leq \Delta.

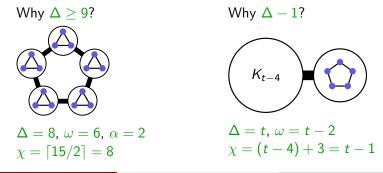
Borodin-Kostochka Conj. (B-K) [1977]:

If \Delta \geq 9 and \omega \leq \Delta - 1 then \chi \leq \Delta - 1.
```









• B-K Conjecture is true for claw-free graphs [C.-Rabern '13]

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \ge 10^{14}$ [Reed '98]

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^6$ suffices

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^6$ suffices
- B-K Conjecture is true, if it is true when $\chi = \Delta = 9$ [Kostochka '80]

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^6$ suffices
- B-K Conjecture is true, if it is true when $\chi = \Delta = 9$ [Kostochka '80]
- Finding big cliques: If $\chi = \Delta$,

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^6$ suffices
- B-K Conjecture is true, if it is true when $\chi = \Delta = 9$ [Kostochka '80]
- Finding big cliques: If $\chi = \Delta$,
 - then $\omega \geq \lfloor \frac{\Delta+1}{2} \rfloor$ [Borodin-Kostochka '77]

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^6$ suffices
- B-K Conjecture is true, if it is true when $\chi = \Delta = 9$ [Kostochka '80]
- Finding big cliques: If $\chi = \Delta$,
 - then $\omega \geq \lfloor \frac{\Delta+1}{2} \rfloor$ [Borodin-Kostochka '77]
 - then $\omega \geq \lfloor \frac{2\Delta+1}{3} \rfloor$ [Mozhan '83]

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^6$ suffices
- B-K Conjecture is true, if it is true when $\chi = \Delta = 9$ [Kostochka '80]
- Finding big cliques: If $\chi = \Delta$,
 - then $\omega \geq \lfloor \frac{\Delta+1}{2} \rfloor$ [Borodin-Kostochka '77]
 - then $\omega \geq \lfloor \frac{2\Delta+1}{3} \rfloor$ [Mozhan '83]
 - then $\omega \geq \Delta 28$ [Kostochka '80]

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^6$ suffices
- B-K Conjecture is true, if it is true when $\chi = \Delta = 9$ [Kostochka '80]
- Finding big cliques: If $\chi = \Delta$,
 - then $\omega \ge \lfloor \frac{\Delta+1}{2} \rfloor$ [Borodin-Kostochka '77]
 - then $\omega \geq \lfloor \frac{2\Delta+1}{3} \rfloor$ [Mozhan '83]
 - then $\omega \ge \Delta 28$ [Kostochka '80]
 - then $\omega \ge \Delta 3$ when $\Delta \ge 31$ [Mozhan '87]

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^6$ suffices
- B-K Conjecture is true, if it is true when $\chi = \Delta = 9$ [Kostochka '80]
- Finding big cliques: If $\chi = \Delta$,
 - then $\omega \ge \lfloor \frac{\Delta+1}{2} \rfloor$ [Borodin-Kostochka '77]
 - then $\omega \geq \lfloor \frac{2\Delta+1}{3} \rfloor$ [Mozhan '83]
 - then $\omega \geq \Delta 28$ [Kostochka '80]
 - then $\omega \ge \Delta 3$ when $\Delta \ge 31$ [Mozhan '87]
 - then $\omega \ge \Delta 3$ when $\Delta \ge 13$ [C.-Rabern '13+]

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^6$ suffices
- B-K Conjecture is true, if it is true when $\chi = \Delta = 9$ [Kostochka '80]
- Finding big cliques: If $\chi = \Delta$,
 - then $\omega \ge \lfloor \frac{\Delta+1}{2} \rfloor$ [Borodin-Kostochka '77]
 - then $\omega \geq \lfloor \frac{2\Delta+1}{3} \rfloor$ [Mozhan '83]
 - then $\omega \ge \Delta 28$ [Kostochka '80]
 - then $\omega \ge \Delta 3$ when $\Delta \ge 31$ [Mozhan '87]
 - then $\omega \ge \Delta 3$ when $\Delta \ge 13$ [C.-Rabern '13+] then $\omega \ge \Delta - 4$ for all Δ

Def: A hitting set is independent set intersecting every maximum clique.

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta \ge 14$ and $\omega = \Delta - 4$ has a hitting set.

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta \ge 14$ and $\omega = \Delta - 4$ has a hitting set.

Lemma 2: If G has $\chi = \Delta = 13$, then G contains K_{10} .

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta \ge 14$ and $\omega = \Delta - 4$ has a hitting set.

Lemma 2: If G has $\chi = \Delta = 13$, then G contains K_{10} .

Main Theorem: Every graph with $\chi = \Delta \ge 13$ contains $K_{\Delta-3}$.

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta \ge 14$ and $\omega = \Delta - 4$ has a hitting set.

Lemma 2: If G has $\chi = \Delta = 13$, then G contains K_{10} .

Main Theorem: Every graph with $\chi = \Delta \ge 13$ contains $K_{\Delta-3}$. **Proof:** Let *G* be minimal counterexample. $\Delta \ge 14$ by Lemma 2.

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta \ge 14$ and $\omega = \Delta - 4$ has a hitting set.

Lemma 2: If G has $\chi = \Delta = 13$, then G contains K_{10} .

Main Theorem: Every graph with $\chi = \Delta \ge 13$ contains $K_{\Delta-3}$. **Proof:** Let *G* be minimal counterexample. $\Delta \ge 14$ by Lemma 2. If $\omega = \Delta - 4$, then let *I* be a hitting set expanded to be a maximal independent set; otherwise let *I* be any maximal independent set.

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta \ge 14$ and $\omega = \Delta - 4$ has a hitting set.

Lemma 2: If G has $\chi = \Delta = 13$, then G contains K_{10} .

Main Theorem: Every graph with $\chi = \Delta \ge 13$ contains $K_{\Delta-3}$. **Proof:** Let *G* be minimal counterexample. $\Delta \ge 14$ by Lemma 2. If $\omega = \Delta - 4$, then let *I* be a hitting set expanded to be a maximal independent set; otherwise let *I* be any maximal independent set.

• If $\Delta(G - I) \leq \Delta(G) - 2$, then win by Brooks' Theorem.

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with $\chi = \Delta \ge 14$ and $\omega = \Delta - 4$ has a hitting set.

Lemma 2: If G has $\chi = \Delta = 13$, then G contains K_{10} .

Main Theorem: Every graph with $\chi = \Delta \ge 13$ contains $K_{\Delta-3}$. **Proof:** Let *G* be minimal counterexample. $\Delta \ge 14$ by Lemma 2. If $\omega = \Delta - 4$, then let *I* be a hitting set expanded to be a maximal independent set; otherwise let *I* be any maximal independent set.

• If $\Delta(G - I) \leq \Delta(G) - 2$, then win by Brooks' Theorem.

If ∆(G − I) = ∆(G) − 1, then G − I is a smaller counterexample, contradiction!

The Induction Step

Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment. Let $\mathcal{E} = \{E_1, E_2, ...\}$ be a set of bad events such that

- $Pr(E_i) \le p < 1$ for all *i*, and
- each E_i is mutually independent of all but d events.
- If $4dp \leq 1$, then with positive probability no bad events occur.

The Induction Step

Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment. Let $\mathcal{E} = \{E_1, E_2, ...\}$ be a set of bad events such that

- $Pr(E_i) \le p < 1$ for all *i*, and
- each E_i is mutually independent of all but d events.
- If $4dp \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every G with $\chi = \Delta \ge 89$ and $\omega = \Delta - 4$ has a hitting set I.

The Induction Step

Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment. Let $\mathcal{E} = \{E_1, E_2, ...\}$ be a set of bad events such that

- $Pr(E_i) \le p < 1$ for all *i*, and
- each E_i is mutually independent of all but d events.
- If $4dp \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every G with $\chi = \Delta \ge 89$ and $\omega = \Delta - 4$ has a hitting set I. **Proof:** Get disjoint cliques S_1, S_2, \ldots of size $k := \Delta - 9$ so each maximum clique contains one.

The Induction Step

Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment. Let $\mathcal{E} = \{E_1, E_2, ...\}$ be a set of bad events such that

- $Pr(E_i) \le p < 1$ for all *i*, and
- each E_i is mutually independent of all but d events.
- If $4dp \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every G with $\chi = \Delta \ge 89$ and $\omega = \Delta - 4$ has a hitting set I. **Proof:** Get disjoint cliques S_1, S_2, \ldots of size $k := \Delta - 9$ so each maximum clique contains one. To form I, choose one vertex from each S_i randomly.

Lovász Local Lemma: Suppose we do a random experiment. Let $\mathcal{E} = \{E_1, E_2, ...\}$ be a set of bad events such that

- $Pr(E_i) \le p < 1$ for all *i*, and
- each E_i is mutually independent of all but d events.

If $4dp \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every G with $\chi = \Delta \ge 89$ and $\omega = \Delta - 4$ has a hitting set I. **Proof:** Get disjoint cliques S_1, S_2, \ldots of size $k := \Delta - 9$ so each maximum clique contains one. To form I, choose one vertex from each S_i randomly. For each edge uv with endpoints u, v in distinct S_i , event E_{uv} is that u, v both chosen for I.

Lovász Local Lemma: Suppose we do a random experiment. Let $\mathcal{E} = \{E_1, E_2, ...\}$ be a set of bad events such that

- $Pr(E_i) \le p < 1$ for all *i*, and
- each E_i is mutually independent of all but d events.

If $4dp \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every G with $\chi = \Delta \ge 89$ and $\omega = \Delta - 4$ has a hitting set I. **Proof:** Get disjoint cliques S_1, S_2, \ldots of size $k := \Delta - 9$ so each maximum clique contains one. To form I, choose one vertex from each S_i randomly. For each edge uv with endpoints u, v in distinct S_i , event E_{uv} is that u, v both chosen for I. $\Pr(E_{uv}) = \frac{1}{|S_u|} \frac{1}{|S_v|} = k^{-2}$.

Lovász Local Lemma: Suppose we do a random experiment. Let $\mathcal{E} = \{E_1, E_2, ...\}$ be a set of bad events such that

- $Pr(E_i) \le p < 1$ for all *i*, and
- each E_i is mutually independent of all but d events.

If $4dp \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every G with $\chi = \Delta \ge 89$ and $\omega = \Delta - 4$ has a hitting set I. **Proof:** Get disjoint cliques S_1, S_2, \ldots of size $k := \Delta - 9$ so each maximum clique contains one. To form I, choose one vertex from each S_i randomly. For each edge uv with endpoints u, v in distinct S_i , event E_{uv} is that u, v both chosen for I. $\Pr(E_{uv}) = \frac{1}{|S_u|} \frac{1}{|S_v|} = k^{-2}$. E_{uv} is independent of all but $2k(\Delta - (k - 1)) = 20k$ events.

Lovász Local Lemma: Suppose we do a random experiment. Let $\mathcal{E} = \{E_1, E_2, ...\}$ be a set of bad events such that

- $Pr(E_i) \le p < 1$ for all *i*, and
- each E_i is mutually independent of all but d events.
- If $4dp \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every G with $\chi = \Delta \ge 89$ and $\omega = \Delta - 4$ has a hitting set I. **Proof:** Get disjoint cliques S_1, S_2, \ldots of size $k := \Delta - 9$ so each maximum clique contains one. To form I, choose one vertex from each S_i randomly. For each edge uv with endpoints u, v in distinct S_i , event E_{uv} is that u, v both chosen for I. $\Pr(E_{uv}) = \frac{1}{|S_u|} \frac{1}{|S_v|} = k^{-2}$. E_{uv} is independent of all but $2k(\Delta - (k - 1)) = 20k$ events. Finally, $4(20k)k^{-2} \le 1$

Lovász Local Lemma: Suppose we do a random experiment. Let $\mathcal{E} = \{E_1, E_2, ...\}$ be a set of bad events such that

- $Pr(E_i) \le p < 1$ for all *i*, and
- each E_i is mutually independent of all but d events.
- If $4dp \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every G with $\chi = \Delta \ge 89$ and $\omega = \Delta - 4$ has a hitting set I. **Proof:** Get disjoint cliques S_1, S_2, \ldots of size $k := \Delta - 9$ so each maximum clique contains one. To form I, choose one vertex from each S_i randomly. For each edge uv with endpoints u, v in distinct S_i , event E_{uv} is that u, v both chosen for I. $\Pr(E_{uv}) = \frac{1}{|S_u|} \frac{1}{|S_v|} = k^{-2}$. E_{uv} is independent of all but $2k(\Delta - (k - 1)) = 20k$ events. Finally, $4(20k)k^{-2} \le 1 \Leftrightarrow k \ge 80$

Lovász Local Lemma: Suppose we do a random experiment. Let $\mathcal{E} = \{E_1, E_2, ...\}$ be a set of bad events such that

- $Pr(E_i) \le p < 1$ for all *i*, and
- each E_i is mutually independent of all but d events.

If $4dp \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every *G* with $\chi = \Delta \ge 89$ and $\omega = \Delta - 4$ has a hitting set *I*. **Proof:** Get disjoint cliques S_1, S_2, \ldots of size $k := \Delta - 9$ so each maximum clique contains one. To form *I*, choose one vertex from each S_i randomly. For each edge uv with endpoints u, v in distinct S_i , event E_{uv} is that u, v both chosen for *I*. $\Pr(E_{uv}) = \frac{1}{|S_u|} \frac{1}{|S_v|} = k^{-2}$. E_{uv} is independent of all but $2k(\Delta - (k - 1)) = 20k$ events. Finally, $4(20k)k^{-2} \le 1 \Leftrightarrow k \ge 80 \Leftrightarrow \Delta \ge 89$.

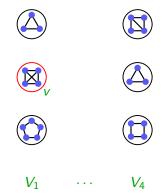
Def: A Mozhan Partition of a graph G with $\Delta = 13$ is a partition of V into clubhouses V_1, \ldots, V_4 and a vertex v with certain properties.

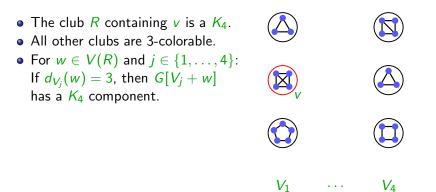
Def: A Mozhan Partition of a graph G with $\Delta = 13$ is a partition of V into clubhouses V_1, \ldots, V_4 and a vertex v with certain properties. For each V_i , components of $G[V_i]$ are clubs meeting in clubhouse V_i .

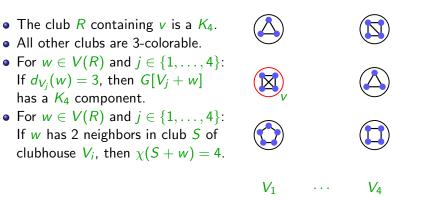
• The club *R* containing *v* is a *K*₄.

- The club *R* containing *v* is a *K*₄.
- All other clubs are 3-colorable.

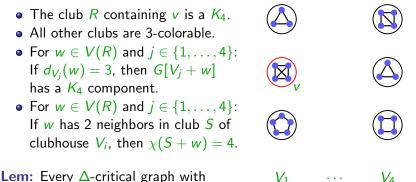
- The club R containing v is a K_4 .
- All other clubs are 3-colorable.







Def: A Mozhan Partition of a graph G with $\Delta = 13$ is a partition of V into clubhouses V_1, \ldots, V_4 and a vertex v with certain properties. For each V_i , components of $G[V_i]$ are clubs meeting in clubhouse V_i .



 $\Delta = 13$ has a Mozhan partition.

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of *G*. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options.

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of *G*. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other.

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

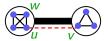
Pf Idea: Start with a Mozhan partition of *G*. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of *G*. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

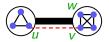
Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of *G*. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .



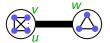
Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of *G*. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .



Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of *G*. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

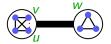


Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of *G*. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_4 joined to K_3 's in two other clubhouses, then G has K_{10} .

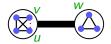


Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of *G*. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_4 joined to K_3 's in two other clubhouses, then G has K_{10} .

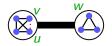


Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of *G*. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_4 joined to K_3 's in two other clubhouses, then G has K_{10} .

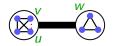


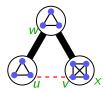
Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of *G*. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_4 joined to K_3 's in two other clubhouses, then G has K_{10} .



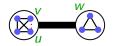


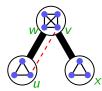
Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of *G*. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_4 joined to K_3 's in two other clubhouses, then G has K_{10} .



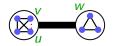


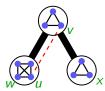
Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of *G*. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_4 joined to K_3 's in two other clubhouses, then G has K_{10} .



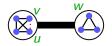


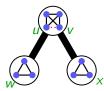
Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

Pf Idea: Start with a Mozhan partition of *G*. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_4 joined to K_3 's in two other clubhouses, then G has K_{10} .





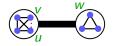
Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

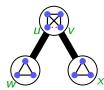
Pf Idea: Start with a Mozhan partition of *G*. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

Claim 1: No clubs become (in)complete to each other.

Claim 2: If *G* has K_4 joined to K_3 's in two other clubhouses, then *G* has K_{10} . **Claim 3:** Each club is

active at most three times.





Lemma 2: If G has $\chi = \Delta = 13$, then G has a K_{10} .

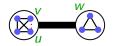
Pf Idea: Start with a Mozhan partition of *G*. Repeatedly send a member of the active K_4 to a clubhouse where it has only 3 neighbors (forming a new K_4), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10} .

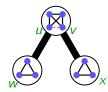
Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_4 joined to K_3 's in two other clubhouses, then G has K_{10} .

Claim 3: Each club is active at most three times.

Claim 4: G contains K_{10} .





What next?

What next?

The four-colour theorem is the tip of the iceberg, the thin end of the wedge, and the first cuckoo of Spring. –William Tutte

What next?

The four-colour theorem is the tip of the iceberg, the thin end of the wedge, and the first cuckoo of Spring. –William Tutte

Reed's Conjecture: $\chi \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$.

What next?

The four-colour theorem is the tip of the iceberg, the thin end of the wedge, and the first cuckoo of Spring. -William Tutte

Reed's Conjecture: $\chi \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$.

Theorem (Reed): There exists $\epsilon > 0$ such that $\chi \leq \lceil \epsilon \omega + (1 - \epsilon)(\Delta + 1) \rceil$.

What next?

The four-colour theorem is the tip of the iceberg, the thin end of the wedge, and the first cuckoo of Spring. –William Tutte

Reed's Conjecture: $\chi \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$.

Theorem (Reed): There exists $\epsilon > 0$ such that $\chi \leq \lceil \epsilon \omega + (1 - \epsilon)(\Delta + 1) \rceil$. Conjectured that $\epsilon = \frac{1}{2}$ works.

B-K Conj: Every graph with $\chi = \Delta \ge 9$ contains K_{Δ} .

- **B-K Conj:** Every graph with $\chi = \Delta \ge 9$ contains K_{Δ} .
 - If true, then best possible.

B-K Conj: Every graph with $\chi = \Delta \ge 9$ contains K_{Δ} .

- If true, then best possible.
- True for claw-free graphs, and also for large Δ .

B-K Conj: Every graph with $\chi = \Delta \ge 9$ contains K_{Δ} .

- If true, then best possible.
- True for claw-free graphs, and also for large Δ .

B-K Conj: Every graph with $\chi = \Delta \ge 9$ contains K_{Δ} .

- If true, then best possible.
- True for claw-free graphs, and also for large Δ .

Main Result: Every graph with $\chi = \Delta \ge 13$ contains $K_{\Delta-3}$.

• Hitting sets reduce to the case $\Delta = 13$.

B-K Conj: Every graph with $\chi = \Delta \ge 9$ contains K_{Δ} .

- If true, then best possible.
- True for claw-free graphs, and also for large Δ .

- Hitting sets reduce to the case $\Delta = 13$.
 - Local Lemma for $\Delta \ge 89$.

B-K Conj: Every graph with $\chi = \Delta \ge 9$ contains K_{Δ} .

- If true, then best possible.
- True for claw-free graphs, and also for large Δ .

- Hitting sets reduce to the case $\Delta = 13$.
 - Local Lemma for $\Delta \ge 89$.
 - Smaller Δ are trickier, but it works for $\Delta \ge 14$.

B-K Conj: Every graph with $\chi = \Delta \ge 9$ contains K_{Δ} .

- If true, then best possible.
- True for claw-free graphs, and also for large Δ .

- Hitting sets reduce to the case $\Delta = 13$.
 - Local Lemma for $\Delta \ge 89$.
 - Smaller Δ are trickier, but it works for $\Delta \ge 14$.
- Mozhan Partitions and Vertex Shuffle show that if $\Delta = 13$, then $\chi \leq 12$ or G has K_{10} .

B-K Conj: Every graph with $\chi = \Delta \ge 9$ contains K_{Δ} .

- If true, then best possible.
- True for claw-free graphs, and also for large Δ .

- Hitting sets reduce to the case $\Delta = 13$.
 - Local Lemma for $\Delta \ge 89$.
 - Smaller Δ are trickier, but it works for $\Delta \geq 14$.
- Mozhan Partitions and Vertex Shuffle show that if $\Delta = 13$, then $\chi \leq 12$ or G has K_{10} .
 - Idea: a partial coloring minimizing number of edges within clubhouses.

B-K Conj: Every graph with $\chi = \Delta \ge 9$ contains K_{Δ} .

- If true, then best possible.
- True for claw-free graphs, and also for large Δ .

Main Result: Every graph with $\chi = \Delta \ge 13$ contains $K_{\Delta-3}$.

- Hitting sets reduce to the case $\Delta = 13$.
 - Local Lemma for $\Delta \ge 89$.
 - Smaller Δ are trickier, but it works for $\Delta \ge 14$.
- Mozhan Partitions and Vertex Shuffle show that if $\Delta = 13$, then $\chi \leq 12$ or G has K_{10} .
 - Idea: a partial coloring minimizing number of edges within clubhouses.

The Iceberg (Reed's Conj): $\chi \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$.