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Introduction Why do we care?

Coloring graphs with roughly ∆ colors

Prop: For all G we have χ ≤ ∆ + 1.

Thm [Brooks 1941]:
If ∆ ≥ 3 and ω ≤ ∆ then χ ≤ ∆.

Borodin-Kostochka Conj. (B-K) [1977]:
If ∆ ≥ 9 and ω ≤ ∆− 1 then χ ≤ ∆− 1.

Why ∆ ≥ 9?

∆ = 8, ω = 6, α = 2
χ = d15/2e = 8

Why ∆− 1?

Kt−4

∆ = t, ω = t − 2
χ = (t − 4) + 3 = t − 1
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Introduction What do we know?

Previous Results

B-K Conjecture is true for claw-free graphs [C.-Rabern ’13]

B-K Conjecture is true when ∆ ≥ 1014 [Reed ’98]
and likely ∆ ≥ 106 suffices

B-K Conjecture is true, if it is true when χ = ∆ = 9 [Kostochka ’80]

Finding big cliques: If χ = ∆,

then ω ≥ b∆+1
2 c [Borodin-Kostochka ’77]

then ω ≥ b 2∆+1
3 c [Mozhan ’83]

then ω ≥ ∆− 28 [Kostochka ’80]
then ω ≥ ∆− 3 when ∆ ≥ 31 [Mozhan ’87]
then ω ≥ ∆− 3 when ∆ ≥ 13 [C.-Rabern ’13+]
then ω ≥ ∆− 4 for all ∆
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Results The Outline

Main Theorem

Def: A hitting set is independent set intersecting every maximum clique.

Lemma 1: Every G with χ = ∆ ≥ 14 and ω = ∆− 4 has a hitting set.

Lemma 2: If G has χ = ∆ = 13, then G contains K10.

Main Theorem: Every graph with χ = ∆ ≥ 13 contains K∆−3.

Proof: Let G be minimal counterexample. ∆ ≥ 14 by Lemma 2.
If ω = ∆− 4, then let I be a hitting set expanded to be a maximal
independent set; otherwise let I be any maximal independent set.

If ∆(G − I ) ≤ ∆(G )− 2, then win by Brooks’ Theorem.

If ∆(G − I ) = ∆(G )− 1, then G − I is a smaller counterexample,
contradiction!
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Results The Induction Step

Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment.
Let E = {E1,E2, . . .} be a set of bad events such that

Pr(Ei ) ≤ p < 1 for all i , and

each Ei is mutually independent of all but d events.

If 4dp ≤ 1, then with positive probability no bad events occur.

Lemma 1’: Every G with χ = ∆ ≥ 89 and ω = ∆− 4 has a hitting set I .
Proof: Get disjoint cliques S1, S2, . . . of size k := ∆− 9 so each maximum
clique contains one. To form I , choose one vertex from each Si randomly.
For each edge uv with endpoints u, v in distinct Si , event
Euv is that u, v both chosen for I . Pr(Euv ) = 1

|Su |
1
|Sv | = k−2.

Euv is independent of all but 2k(∆− (k − 1)) = 20k events.
Finally, 4(20k)k−2 ≤ 1⇔ k ≥ 80⇔ ∆ ≥ 89.
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Results The Setup

Clubs and Clubhouses

Def: A Mozhan Partition of a graph G with ∆ = 13 is a partition of V
into clubhouses V1, . . . ,V4 and a vertex v with certain properties.

For each Vi , components of G [Vi ] are clubs meeting in clubhouse Vi .

v

V1
. . . V4

The club R containing v is a K4.

All other clubs are 3-colorable.

For w ∈ V (R) and j ∈ {1, . . . , 4}:
If dVj

(w) = 3, then G [Vj + w ]
has a K4 component.

For w ∈ V (R) and j ∈ {1, . . . , 4}:
If w has 2 neighbors in club S of
clubhouse Vi , then χ(S + w) = 4.

Lem: Every ∆-critical graph with
∆ = 13 has a Mozhan partition.
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Results The Base Case

The Vertex Shuffle

Lemma 2: If G has χ = ∆ = 13, then G has a K10.

Pf Idea: Start with a Mozhan partition of G . Repeatedly send a member
of the active K4 to a clubhouse where it has only 3 neighbors (forming a
new K4), always at least 2 options. Move each vertex only once. Never
move between clubs joined to each other. Find either a 12-coloring or K10.

Claim 1: No clubs become
(in)complete to each other.

v

www

u

v

v x

xw vu

uw

Claim 2: If G has K4

joined to K3’s in two other
clubhouses, then G has K10.

Claim 3: Each club is
active at most three times.

Claim 4: G contains K10.
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Claim 1: No clubs become
(in)complete to each other.
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Claim 2: If G has K4

joined to K3’s in two other
clubhouses, then G has K10.

Claim 3: Each club is
active at most three times.

Claim 4: G contains K10.
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Future Work The Iceberg

What next?

The four-colour theorem is the tip of the iceberg, the thin end of
the wedge, and the first cuckoo of Spring. –William Tutte

Reed’s Conjecture: χ ≤
⌈
ω+∆+1

2

⌉
.

Theorem (Reed): There exists ε > 0 such that
χ ≤ dεω + (1− ε)(∆ + 1)e. Conjectured that ε = 1

2 works.
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Summary

In Review

B-K Conj: Every graph with χ = ∆ ≥ 9 contains K∆.

If true, then best possible.

True for claw-free graphs, and also for large ∆.

Main Result: Every graph with χ = ∆ ≥ 13 contains K∆−3.

Hitting sets reduce to the case ∆ = 13.

Local Lemma for ∆ ≥ 89.
Smaller ∆ are trickier, but it works for ∆ ≥ 14.

Mozhan Partitions and Vertex Shuffle show
that if ∆ = 13, then χ ≤ 12 or G has K10.

Idea: a partial coloring minimizing number of edges within clubhouses.

The Iceberg (Reed’s Conj): χ ≤
⌈
ω+∆+1

2

⌉
.
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