Graphs with $\chi=\Delta$ have big cliques

Daniel W. Cranston
Virginia Commonwealth University dcranston@vcu.edu
Joint with Landon Rabern
Slides available on my webpage

Discrete Math Days of the Northeast
Wesleyan University, 5 October 2013

Coloring graphs with roughly Δ colors

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.
Why $\Delta \geq 9$?

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.

Why $\Delta \geq 9$?

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.

Why $\Delta-1$?

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.

Why $\Delta-1$?

$\Delta=t$

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.
Why $\Delta \geq 9$?

$\Delta=8, \omega=6, \alpha=2$

$$
\chi=\lceil 15 / 2\rceil=8
$$

Why $\Delta-1$?

$\Delta=t, \omega=t-2$

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.

Why $\Delta-1$?

$$
\begin{aligned}
& \Delta=t, \omega=t-2 \\
& \chi=(t-4)+3=t-1
\end{aligned}
$$

Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]

Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98]

Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^{6}$ suffices

Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^{6}$ suffices
- B-K Conjecture is true, if it is true when $\chi=\Delta=9$ [Kostochka '80]

Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^{6}$ suffices
- B-K Conjecture is true, if it is true when $\chi=\Delta=9$ [Kostochka '80]
- Finding big cliques: If $\chi=\Delta$,

Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^{6}$ suffices
- B-K Conjecture is true, if it is true when $\chi=\Delta=9$ [Kostochka '80]
- Finding big cliques: If $\chi=\Delta$,
- then $\omega \geq\left\lfloor\frac{\Delta+1}{2}\right\rfloor$ [Borodin-Kostochka '77]

Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^{6}$ suffices
- B-K Conjecture is true, if it is true when $\chi=\Delta=9$ [Kostochka '80]
- Finding big cliques: If $\chi=\Delta$,
- then $\omega \geq\left\lfloor\frac{\Delta+1}{2}\right\rfloor[B o r o d i n-K o s t o c h k a ~ ' 77] ~$
- then $\omega \geq\left\lfloor\frac{2 \Delta+1}{3}\right\rfloor$ [Mozhan '83]

Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^{6}$ suffices
- B-K Conjecture is true, if it is true when $\chi=\Delta=9$ [Kostochka '80]
- Finding big cliques: If $\chi=\Delta$,
- then $\omega \geq\left\lfloor\frac{\Delta+1}{2}\right\rfloor[B o r o d i n-K o s t o c h k a ~ ' 77] ~$
- then $\omega \geq\left\lfloor\frac{2 \Delta+1}{3}\right\rfloor$ [Mozhan '83]
- then $\omega \geq \Delta-28$ [Kostochka '80]

Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^{6}$ suffices
- B-K Conjecture is true, if it is true when $\chi=\Delta=9$ [Kostochka '80]
- Finding big cliques: If $\chi=\Delta$,
- then $\omega \geq\left\lfloor\frac{\Delta+1}{2}\right\rfloor[B o r o d i n-K o s t o c h k a ~ ' 77] ~$
- then $\omega \geq\left\lfloor\frac{2 \Delta+1}{3}\right\rfloor$ [Mozhan '83]
- then $\omega \geq \Delta-28$ [Kostochka '80]
- then $\omega \geq \Delta-3$ when $\Delta \geq 31$ [Mozhan '87]

Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^{6}$ suffices
- B-K Conjecture is true, if it is true when $\chi=\Delta=9$ [Kostochka '80]
- Finding big cliques: If $\chi=\Delta$,
- then $\omega \geq\left\lfloor\frac{\Delta+1}{2}\right\rfloor[B o r o d i n-K o s t o c h k a ~ ' 77] ~$
- then $\omega \geq\left\lfloor\frac{2 \Delta+1}{3}\right\rfloor$ [Mozhan '83]
- then $\omega \geq \Delta-28$ [Kostochka '80]
- then $\omega \geq \Delta-3$ when $\Delta \geq 31$ [Mozhan '87]
- then $\omega \geq \Delta-3$ when $\Delta \geq 13$ [C.-Rabern '13+]

Previous Results

- B-K Conjecture is true for claw-free graphs [C.-Rabern '13]
- B-K Conjecture is true when $\Delta \geq 10^{14}$ [Reed '98] and likely $\Delta \geq 10^{6}$ suffices
- B-K Conjecture is true, if it is true when $\chi=\Delta=9$ [Kostochka '80]
- Finding big cliques: If $\chi=\Delta$,
- then $\omega \geq\left\lfloor\frac{\Delta+1}{2}\right\rfloor$ [Borodin-Kostochka '77]
- then $\omega \geq\left\lfloor\frac{2 \Delta+1}{3}\right\rfloor$ [Mozhan '83]
- then $\omega \geq \Delta-28$ [Kostochka '80]
- then $\omega \geq \Delta-3$ when $\Delta \geq 31$ [Mozhan '87]
- then $\omega \geq \Delta-3$ when $\Delta \geq 13$ [C.-Rabern '13+]
then $\omega \geq \Delta-4$ for all Δ

Main Theorem

Def: A hitting set is independent set intersecting every maximum clique.

Main Theorem

Def: A hitting set is independent set intersecting every maximum clique.
Lemma 1: Every G with $\chi=\Delta \geq 14$ and $\omega=\Delta-4$ has a hitting set.

Main Theorem

Def: A hitting set is independent set intersecting every maximum clique.
Lemma 1: Every G with $\chi=\Delta \geq 14$ and $\omega=\Delta-4$ has a hitting set.
Lemma 2: If G has $\chi=\Delta=13$, then G contains K_{10}.

Main Theorem

Def: A hitting set is independent set intersecting every maximum clique.
Lemma 1: Every G with $\chi=\Delta \geq 14$ and $\omega=\Delta-4$ has a hitting set.
Lemma 2: If G has $\chi=\Delta=13$, then G contains K_{10}.
Main Theorem: Every graph with $\chi=\Delta \geq 13$ contains $K_{\Delta-3}$.

Main Theorem

Def: A hitting set is independent set intersecting every maximum clique.
Lemma 1: Every G with $\chi=\Delta \geq 14$ and $\omega=\Delta-4$ has a hitting set.
Lemma 2: If G has $\chi=\Delta=13$, then G contains K_{10}.
Main Theorem: Every graph with $\chi=\Delta \geq 13$ contains $K_{\Delta-3}$. Proof: Let G be minimal counterexample. $\Delta \geq 14$ by Lemma 2 .

Main Theorem

Def: A hitting set is independent set intersecting every maximum clique.
Lemma 1: Every G with $\chi=\Delta \geq 14$ and $\omega=\Delta-4$ has a hitting set.
Lemma 2: If G has $\chi=\Delta=13$, then G contains K_{10}.
Main Theorem: Every graph with $\chi=\Delta \geq 13$ contains $K_{\Delta-3}$. Proof: Let G be minimal counterexample. $\Delta \geq 14$ by Lemma 2. If $\omega=\Delta-4$, then let $/$ be a hitting set expanded to be a maximal independent set; otherwise let / be any maximal independent set.

Main Theorem

Def: A hitting set is independent set intersecting every maximum clique.
Lemma 1: Every G with $\chi=\Delta \geq 14$ and $\omega=\Delta-4$ has a hitting set.
Lemma 2: If G has $\chi=\Delta=13$, then G contains K_{10}.
Main Theorem: Every graph with $\chi=\Delta \geq 13$ contains $K_{\Delta-3}$. Proof: Let G be minimal counterexample. $\Delta \geq 14$ by Lemma 2. If $\omega=\Delta-4$, then let $/$ be a hitting set expanded to be a maximal independent set; otherwise let / be any maximal independent set.

- If $\Delta(G-I) \leq \Delta(G)-2$, then win by Brooks' Theorem.

Main Theorem

Def: A hitting set is independent set intersecting every maximum clique.
Lemma 1: Every G with $\chi=\Delta \geq 14$ and $\omega=\Delta-4$ has a hitting set.
Lemma 2: If G has $\chi=\Delta=13$, then G contains K_{10}.
Main Theorem: Every graph with $\chi=\Delta \geq 13$ contains $K_{\Delta-3}$.
Proof: Let G be minimal counterexample. $\Delta \geq 14$ by Lemma 2. If $\omega=\Delta-4$, then let $/$ be a hitting set expanded to be a maximal independent set; otherwise let / be any maximal independent set.

- If $\Delta(G-I) \leq \Delta(G)-2$, then win by Brooks' Theorem.
- If $\Delta(G-I)=\Delta(G)-1$, then $G-I$ is a smaller counterexample, contradiction!

Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment. Let $\mathcal{E}=\left\{E_{1}, E_{2}, \ldots\right\}$ be a set of bad events such that

- $\operatorname{Pr}\left(E_{i}\right) \leq p<1$ for all i, and
- each E_{i} is mutually independent of all but d events.

If $4 d p \leq 1$, then with positive probability no bad events occur.

Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment.
Let $\mathcal{E}=\left\{E_{1}, E_{2}, \ldots\right\}$ be a set of bad events such that

- $\operatorname{Pr}\left(E_{i}\right) \leq p<1$ for all i, and
- each E_{i} is mutually independent of all but d events.

If $4 d p \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every G with $\chi=\Delta \geq 89$ and $\omega=\Delta-4$ has a hitting set l.

Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment.
Let $\mathcal{E}=\left\{E_{1}, E_{2}, \ldots\right\}$ be a set of bad events such that

- $\operatorname{Pr}\left(E_{i}\right) \leq p<1$ for all i, and
- each E_{i} is mutually independent of all but d events.

If $4 d p \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every G with $\chi=\Delta \geq 89$ and $\omega=\Delta-4$ has a hitting set l. Proof: Get disjoint cliques S_{1}, S_{2}, \ldots of size $k:=\Delta-9$ so each maximum clique contains one.

Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment.
Let $\mathcal{E}=\left\{E_{1}, E_{2}, \ldots\right\}$ be a set of bad events such that

- $\operatorname{Pr}\left(E_{i}\right) \leq p<1$ for all i, and
- each E_{i} is mutually independent of all but d events.

If $4 d p \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every G with $\chi=\Delta \geq 89$ and $\omega=\Delta-4$ has a hitting set $/$. Proof: Get disjoint cliques S_{1}, S_{2}, \ldots of size $k:=\Delta-9$ so each maximum clique contains one. To form $/$, choose one vertex from each S_{i} randomly.

Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment.
Let $\mathcal{E}=\left\{E_{1}, E_{2}, \ldots\right\}$ be a set of bad events such that

- $\operatorname{Pr}\left(E_{i}\right) \leq p<1$ for all i, and
- each E_{i} is mutually independent of all but d events.

If $4 d p \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every G with $\chi=\Delta \geq 89$ and $\omega=\Delta-4$ has a hitting set l. Proof: Get disjoint cliques S_{1}, S_{2}, \ldots of size $k:=\Delta-9$ so each maximum clique contains one. To form I, choose one vertex from each S_{i} randomly. For each edge $u v$ with endpoints u, v in distinct S_{i}, event $E_{u v}$ is that u, v both chosen for l.

Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment.
Let $\mathcal{E}=\left\{E_{1}, E_{2}, \ldots\right\}$ be a set of bad events such that

- $\operatorname{Pr}\left(E_{i}\right) \leq p<1$ for all i, and
- each E_{i} is mutually independent of all but d events.

If $4 d p \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every G with $\chi=\Delta \geq 89$ and $\omega=\Delta-4$ has a hitting set l. Proof: Get disjoint cliques S_{1}, S_{2}, \ldots of size $k:=\Delta-9$ so each maximum clique contains one. To form I, choose one vertex from each S_{i} randomly. For each edge $u v$ with endpoints u, v in distinct S_{i}, event $E_{u v}$ is that u, v both chosen for $1 . \operatorname{Pr}\left(E_{u v}\right)=\frac{1}{\left|S_{u}\right|} \frac{1}{\left|S_{v}\right|}=k^{-2}$.

Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment.
Let $\mathcal{E}=\left\{E_{1}, E_{2}, \ldots\right\}$ be a set of bad events such that

- $\operatorname{Pr}\left(E_{i}\right) \leq p<1$ for all i, and
- each E_{i} is mutually independent of all but d events.

If $4 d p \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every G with $\chi=\Delta \geq 89$ and $\omega=\Delta-4$ has a hitting set l. Proof: Get disjoint cliques S_{1}, S_{2}, \ldots of size $k:=\Delta-9$ so each maximum clique contains one. To form I, choose one vertex from each S_{i} randomly. For each edge $u v$ with endpoints u, v in distinct S_{i}, event $E_{u v}$ is that u, v both chosen for $1 . \operatorname{Pr}\left(E_{u v}\right)=\frac{1}{\left|S_{u}\right|} \frac{1}{\left|S_{v}\right|}=k^{-2}$.
$E_{u v}$ is independent of all but $2 k(\Delta-(k-1))=20 k$ events.

Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment.
Let $\mathcal{E}=\left\{E_{1}, E_{2}, \ldots\right\}$ be a set of bad events such that

- $\operatorname{Pr}\left(E_{i}\right) \leq p<1$ for all i, and
- each E_{i} is mutually independent of all but d events.

If $4 d p \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every G with $\chi=\Delta \geq 89$ and $\omega=\Delta-4$ has a hitting set l. Proof: Get disjoint cliques S_{1}, S_{2}, \ldots of size $k:=\Delta-9$ so each maximum clique contains one. To form I, choose one vertex from each S_{i} randomly. For each edge $u v$ with endpoints u, v in distinct S_{i}, event $E_{u v}$ is that u, v both chosen for $1 . \operatorname{Pr}\left(E_{u v}\right)=\frac{1}{\left|S_{u}\right|} \frac{1}{\left|S_{v}\right|}=k^{-2}$. $E_{u v}$ is independent of all but $2 k(\Delta-(k-1))=20 k$ events. Finally, $4(20 k) k^{-2} \leq 1$

Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment.
Let $\mathcal{E}=\left\{E_{1}, E_{2}, \ldots\right\}$ be a set of bad events such that

- $\operatorname{Pr}\left(E_{i}\right) \leq p<1$ for all i, and
- each E_{i} is mutually independent of all but d events.

If $4 d p \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every G with $\chi=\Delta \geq 89$ and $\omega=\Delta-4$ has a hitting set l. Proof: Get disjoint cliques S_{1}, S_{2}, \ldots of size $k:=\Delta-9$ so each maximum clique contains one. To form I, choose one vertex from each S_{i} randomly. For each edge $u v$ with endpoints u, v in distinct S_{i}, event $E_{u v}$ is that u, v both chosen for $1 . \operatorname{Pr}\left(E_{u v}\right)=\frac{1}{\left|S_{u}\right|} \frac{1}{\left|S_{v}\right|}=k^{-2}$. $E_{u v}$ is independent of all but $2 k(\Delta-(k-1))=20 k$ events. Finally, $4(20 k) k^{-2} \leq 1 \Leftrightarrow k \geq 80$

Random Hitting Sets

Lovász Local Lemma: Suppose we do a random experiment.
Let $\mathcal{E}=\left\{E_{1}, E_{2}, \ldots\right\}$ be a set of bad events such that

- $\operatorname{Pr}\left(E_{i}\right) \leq p<1$ for all i, and
- each E_{i} is mutually independent of all but d events.

If $4 d p \leq 1$, then with positive probability no bad events occur.

Lemma 1': Every G with $\chi=\Delta \geq 89$ and $\omega=\Delta-4$ has a hitting set l. Proof: Get disjoint cliques S_{1}, S_{2}, \ldots of size $k:=\Delta-9$ so each maximum clique contains one. To form I, choose one vertex from each S_{i} randomly. For each edge $u v$ with endpoints u, v in distinct S_{i}, event $E_{u v}$ is that u, v both chosen for $1 . \operatorname{Pr}\left(E_{u v}\right)=\frac{1}{\left|S_{u}\right|} \frac{1}{\left|S_{v}\right|}=k^{-2}$. $E_{u v}$ is independent of all but $2 k(\Delta-(k-1))=20 k$ events. Finally, $4(20 k) k^{-2} \leq 1 \Leftrightarrow k \geq 80 \Leftrightarrow \Delta \geq 89$.

Clubs and Clubhouses

Def: A Mozhan Partition of a graph G with $\Delta=13$ is a partition of V into clubhouses V_{1}, \ldots, V_{4} and a vertex v with certain properties.

Clubs and Clubhouses

Def: A Mozhan Partition of a graph G with $\Delta=13$ is a partition of V into clubhouses V_{1}, \ldots, V_{4} and a vertex v with certain properties. For each V_{i}, components of $G\left[V_{i}\right]$ are clubs meeting in clubhouse V_{i}.

Clubs and Clubhouses

Def: A Mozhan Partition of a graph G with $\Delta=13$ is a partition of V into clubhouses V_{1}, \ldots, V_{4} and a vertex v with certain properties. For each V_{i}, components of $G\left[V_{i}\right]$ are clubs meeting in clubhouse V_{i}.

- The club R containing v is a K_{4}.

Clubs and Clubhouses

Def: A Mozhan Partition of a graph G with $\Delta=13$ is a partition of V into clubhouses V_{1}, \ldots, V_{4} and a vertex v with certain properties. For each V_{i}, components of $G\left[V_{i}\right]$ are clubs meeting in clubhouse V_{i}.

- The club R containing v is a K_{4}.
- All other clubs are 3-colorable.

Clubs and Clubhouses

Def: A Mozhan Partition of a graph G with $\Delta=13$ is a partition of V into clubhouses V_{1}, \ldots, V_{4} and a vertex v with certain properties. For each V_{i}, components of $G\left[V_{i}\right]$ are clubs meeting in clubhouse V_{i}.

- The club R containing v is a K_{4}.
- All other clubs are 3-colorable.

$\begin{array}{lll}V_{1} & \cdots & V_{4}\end{array}$

Clubs and Clubhouses

Def: A Mozhan Partition of a graph G with $\Delta=13$ is a partition of V into clubhouses V_{1}, \ldots, V_{4} and a vertex v with certain properties. For each V_{i}, components of $G\left[V_{i}\right]$ are clubs meeting in clubhouse V_{i}.

- The club R containing v is a K_{4}.
- All other clubs are 3-colorable.

- For $w \in V(R)$ and $j \in\{1, \ldots, 4\}$: If $d_{V_{j}}(w)=3$, then $G\left[V_{j}+w\right]$ has a K_{4} component.

$$
\begin{array}{lll}
V_{1} & \cdots & V_{4}
\end{array}
$$

Clubs and Clubhouses

Def: A Mozhan Partition of a graph G with $\Delta=13$ is a partition of V into clubhouses V_{1}, \ldots, V_{4} and a vertex v with certain properties. For each V_{i}, components of $G\left[V_{i}\right]$ are clubs meeting in clubhouse V_{i}.

- The club R containing v is a K_{4}.
- All other clubs are 3-colorable.

- For $w \in V(R)$ and $j \in\{1, \ldots, 4\}$: If $d_{V_{j}}(w)=3$, then $G\left[V_{j}+w\right]$ has a K_{4} component.

- For $w \in V(R)$ and $j \in\{1, \ldots, 4\}$: If w has 2 neighbors in club S of clubhouse V_{i}, then $\chi(S+w)=4$.

$\begin{array}{lll}V_{1} & \cdots & V_{4}\end{array}$

Clubs and Clubhouses

Def: A Mozhan Partition of a graph G with $\Delta=13$ is a partition of V into clubhouses V_{1}, \ldots, V_{4} and a vertex v with certain properties. For each V_{i}, components of $G\left[V_{i}\right]$ are clubs meeting in clubhouse V_{i}.

- The club R containing v is a K_{4}.
- All other clubs are 3-colorable.

- For $w \in V(R)$ and $j \in\{1, \ldots, 4\}$: If $d_{V_{j}}(w)=3$, then $G\left[V_{j}+w\right]$ has a K_{4} component.

- For $w \in V(R)$ and $j \in\{1, \ldots, 4\}$: If w has 2 neighbors in club S of clubhouse V_{i}, then $\chi(S+w)=4$.

Lem: Every Δ-critical graph with $\Delta=13$ has a Mozhan partition.

The Vertex Shuffle

Lemma 2: If G has $\chi=\Delta=13$, then G has a K_{10}.

The Vertex Shuffle

Lemma 2: If G has $\chi=\Delta=13$, then G has a K_{10}.
Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_{4} to a clubhouse where it has only 3 neighbors (forming a new K_{4}), always at least 2 options.

The Vertex Shuffle

Lemma 2: If G has $\chi=\Delta=13$, then G has a K_{10}.
Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_{4} to a clubhouse where it has only 3 neighbors (forming a new K_{4}), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other.

The Vertex Shuffle

Lemma 2: If G has $\chi=\Delta=13$, then G has a K_{10}.
Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_{4} to a clubhouse where it has only 3 neighbors (forming a new K_{4}), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

The Vertex Shuffle

Lemma 2: If G has $\chi=\Delta=13$, then G has a K_{10}.
Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_{4} to a clubhouse where it has only 3 neighbors (forming a new K_{4}), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

The Vertex Shuffle

Lemma 2: If G has $\chi=\Delta=13$, then G has a K_{10}.
Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_{4} to a clubhouse where it has only 3 neighbors (forming a new K_{4}), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12 -coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

The Vertex Shuffle

Lemma 2: If G has $\chi=\Delta=13$, then G has a K_{10}.
Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_{4} to a clubhouse where it has only 3 neighbors (forming a new K_{4}), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12 -coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

The Vertex Shuffle

Lemma 2: If G has $\chi=\Delta=13$, then G has a K_{10}.
Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_{4} to a clubhouse where it has only 3 neighbors (forming a new K_{4}), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12 -coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

The Vertex Shuffle

Lemma 2: If G has $\chi=\Delta=13$, then G has a K_{10}.
Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_{4} to a clubhouse where it has only 3 neighbors (forming a new K_{4}), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_{4} joined to K_{3} 's in two other clubhouses, then G has K_{10}.

The Vertex Shuffle

Lemma 2: If G has $\chi=\Delta=13$, then G has a K_{10}.
Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_{4} to a clubhouse where it has only 3 neighbors (forming a new K_{4}), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_{4} joined to K_{3} 's in two other clubhouses, then G has K_{10}.

The Vertex Shuffle

Lemma 2: If G has $\chi=\Delta=13$, then G has a K_{10}.
Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_{4} to a clubhouse where it has only 3 neighbors (forming a new K_{4}), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_{4} joined to K_{3} 's in two other clubhouses, then G has K_{10}.

The Vertex Shuffle

Lemma 2: If G has $\chi=\Delta=13$, then G has a K_{10}.
Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_{4} to a clubhouse where it has only 3 neighbors (forming a new K_{4}), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_{4} joined to K_{3} 's in two other clubhouses, then G has K_{10}.

The Vertex Shuffle

Lemma 2: If G has $\chi=\Delta=13$, then G has a K_{10}.
Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_{4} to a clubhouse where it has only 3 neighbors (forming a new K_{4}), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_{4} joined to K_{3} 's in two other clubhouses, then G has K_{10}.

The Vertex Shuffle

Lemma 2: If G has $\chi=\Delta=13$, then G has a K_{10}.
Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_{4} to a clubhouse where it has only 3 neighbors (forming a new K_{4}), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_{4} joined to K_{3} 's in two other clubhouses, then G has K_{10}.

The Vertex Shuffle

Lemma 2: If G has $\chi=\Delta=13$, then G has a K_{10}.
Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_{4} to a clubhouse where it has only 3 neighbors (forming a new K_{4}), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_{4} joined to K_{3} 's in two other clubhouses, then G has K_{10}.

The Vertex Shuffle

Lemma 2: If G has $\chi=\Delta=13$, then G has a K_{10}.
Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_{4} to a clubhouse where it has only 3 neighbors (forming a new K_{4}), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_{4} joined to K_{3} 's in two other clubhouses, then G has K_{10}.
Claim 3: Each club is active at most three times.

The Vertex Shuffle

Lemma 2: If G has $\chi=\Delta=13$, then G has a K_{10}.
Pf Idea: Start with a Mozhan partition of G. Repeatedly send a member of the active K_{4} to a clubhouse where it has only 3 neighbors (forming a new K_{4}), always at least 2 options. Move each vertex only once. Never move between clubs joined to each other. Find either a 12-coloring or K_{10}.

Claim 1: No clubs become (in)complete to each other.

Claim 2: If G has K_{4} joined to K_{3} 's in two other clubhouses, then G has K_{10}.
Claim 3: Each club is active at most three times.
Claim 4: G contains K_{10}.

What next?

What next?

The four-colour theorem is the tip of the iceberg, the thin end of the wedge, and the first cuckoo of Spring. -William Tutte

What next?

The four-colour theorem is the tip of the iceberg, the thin end of the wedge, and the first cuckoo of Spring. -William Tutte

Reed's Conjecture: $\chi \leq\left\lceil\frac{\omega+\Delta+1}{2}\right\rceil$.

What next?

The four-colour theorem is the tip of the iceberg, the thin end of the wedge, and the first cuckoo of Spring. -William Tutte

Reed's Conjecture: $\chi \leq\left\lceil\frac{\omega+\Delta+1}{2}\right\rceil$.
Theorem (Reed): There exists $\epsilon>0$ such that
$\chi \leq\lceil\epsilon \omega+(1-\epsilon)(\Delta+1)\rceil$.

What next?

The four-colour theorem is the tip of the iceberg, the thin end of the wedge, and the first cuckoo of Spring. -William Tutte

Reed's Conjecture: $\chi \leq\left\lceil\frac{\omega+\Delta+1}{2}\right\rceil$.
Theorem (Reed): There exists $\epsilon>0$ such that
$\chi \leq\lceil\epsilon \omega+(1-\epsilon)(\Delta+1)\rceil$. Conjectured that $\epsilon=\frac{1}{2}$ works.

In Review

B-K Conj: Every graph with $\chi=\Delta \geq 9$ contains K_{Δ}.

In Review

B-K Conj: Every graph with $\chi=\Delta \geq 9$ contains K_{Δ}.

- If true, then best possible.

In Review

B-K Conj: Every graph with $\chi=\Delta \geq 9$ contains K_{Δ}.

- If true, then best possible.
- True for claw-free graphs, and also for large Δ.

In Review

B-K Conj: Every graph with $\chi=\Delta \geq 9$ contains K_{Δ}.

- If true, then best possible.
- True for claw-free graphs, and also for large Δ.

Main Result: Every graph with $\chi=\Delta \geq 13$ contains $K_{\Delta-3}$.

In Review

B-K Conj: Every graph with $\chi=\Delta \geq 9$ contains K_{Δ}.

- If true, then best possible.
- True for claw-free graphs, and also for large Δ.

Main Result: Every graph with $\chi=\Delta \geq 13$ contains $K_{\Delta-3}$.

- Hitting sets reduce to the case $\Delta=13$.

In Review

B-K Conj: Every graph with $\chi=\Delta \geq 9$ contains K_{Δ}.

- If true, then best possible.
- True for claw-free graphs, and also for large Δ.

Main Result: Every graph with $\chi=\Delta \geq 13$ contains $K_{\Delta-3}$.

- Hitting sets reduce to the case $\Delta=13$.
- Local Lemma for $\Delta \geq 89$.

In Review

B-K Conj: Every graph with $\chi=\Delta \geq 9$ contains K_{Δ}.

- If true, then best possible.
- True for claw-free graphs, and also for large Δ.

Main Result: Every graph with $\chi=\Delta \geq 13$ contains $K_{\Delta-3}$.

- Hitting sets reduce to the case $\Delta=13$.
- Local Lemma for $\Delta \geq 89$.
- Smaller Δ are trickier, but it works for $\Delta \geq 14$.

In Review

B-K Conj: Every graph with $\chi=\Delta \geq 9$ contains K_{Δ}.

- If true, then best possible.
- True for claw-free graphs, and also for large Δ.

Main Result: Every graph with $\chi=\Delta \geq 13$ contains $K_{\Delta-3}$.

- Hitting sets reduce to the case $\Delta=13$.
- Local Lemma for $\Delta \geq 89$.
- Smaller Δ are trickier, but it works for $\Delta \geq 14$.
- Mozhan Partitions and Vertex Shuffle show that if $\Delta=13$, then $\chi \leq 12$ or G has K_{10}.

In Review

B-K Conj: Every graph with $\chi=\Delta \geq 9$ contains K_{Δ}.

- If true, then best possible.
- True for claw-free graphs, and also for large Δ.

Main Result: Every graph with $\chi=\Delta \geq 13$ contains $K_{\Delta-3}$.

- Hitting sets reduce to the case $\Delta=13$.
- Local Lemma for $\Delta \geq 89$.
- Smaller Δ are trickier, but it works for $\Delta \geq 14$.
- Mozhan Partitions and Vertex Shuffle show that if $\Delta=13$, then $\chi \leq 12$ or G has K_{10}.
- Idea: a partial coloring minimizing number of edges within clubhouses.

In Review

B-K Conj: Every graph with $\chi=\Delta \geq 9$ contains K_{Δ}.

- If true, then best possible.
- True for claw-free graphs, and also for large Δ.

Main Result: Every graph with $\chi=\Delta \geq 13$ contains $K_{\Delta-3}$.

- Hitting sets reduce to the case $\Delta=13$.
- Local Lemma for $\Delta \geq 89$.
- Smaller Δ are trickier, but it works for $\Delta \geq 14$.
- Mozhan Partitions and Vertex Shuffle show that if $\Delta=13$, then $\chi \leq 12$ or G has K_{10}.
- Idea: a partial coloring minimizing number of edges within clubhouses.

The Iceberg (Reed's Conj): $\chi \leq\left\lceil\frac{\omega+\Delta+1}{2}\right\rceil$.

