Coloring a claw-free graph with Δ-1 colors

Daniel W. Cranston
Virginia Commonwealth University dcranston@vcu.edu
Joint with Landon Rabern
Slides available on my webpage

George Mason CAGS

15 February 2013

Coloring graphs with roughly Δ colors

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Coloring graphs with roughly Δ colors
Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.

Coloring graphs with roughly Δ colors
Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.

Why $\Delta \geq 9$?

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.

$$
\text { Why } \Delta \geq 9 ?
$$

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.

Coloring graphs with roughly Δ colors
Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.

Coloring graphs with roughly Δ colors
Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.

$$
\begin{aligned}
& \text { Why } \Delta \geq 9 ? \\
& \begin{array}{l}
\Delta=8, \omega=6, \alpha=2 \\
\chi=\lceil 15 / 2\rceil=8
\end{array}
\end{aligned}
$$

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.

$$
\begin{aligned}
& \text { Why } \Delta \geq 9 ? \\
& \begin{array}{l}
\text { ? }
\end{array}=1, \omega=6, \alpha=2 \\
& \chi=\lceil 15 / 2\rceil=8
\end{aligned}
$$

Coloring graphs with roughly Δ colors
Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.

Why $\Delta-1$?

$\Delta=t$

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.

Why $\Delta-1$?

$\Delta=t, \omega=t-2$

Coloring graphs with roughly Δ colors

Prop: For all G we have $\chi \leq \Delta+1$.
Thm [Brooks 1941]:
If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.
Borodin-Kostochka Conj. (B-K) [1977]:
If $\Delta \geq 9$ and $\omega \leq \Delta-1$ then $\chi \leq \Delta-1$.
Why $\Delta \geq 9$?

$$
\begin{aligned}
& \Delta=8, \omega=6, \alpha=2 \\
& \chi=\lceil 15 / 2\rceil=8
\end{aligned}
$$

Why $\Delta-1$?

$\Delta=t, \omega=t-2$
$\chi=(t-4)+3=t-1$
$\chi=(t-4)+3=t-1$

What else is known?

What else is known?

Thm [Kostochka '80]: To prove $\mathrm{B}-\mathrm{K}, \Delta=9$ suffices.

What else is known?

Thm [Kostochka '80]: To prove B-K, $\Delta=9$ suffices.
Thm [C.-Rabern '13+]: To prove B-K, it suffices to show that if $\chi=\Delta=9$, then G contains the subgraph $K_{3} \vee \overline{K_{6}}$.

What else is known?

Thm [Kostochka '80]: To prove $\mathrm{B}-\mathrm{K}, \Delta=9$ suffices.
Thm [C.-Rabern '13+]: To prove B-K, it suffices to show that if $\chi=\Delta=9$, then G contains the subgraph $K_{3} \vee \overline{K_{6}}$.

- Recoloring arguments

What else is known?

Thm [Kostochka '80]: To prove B-K, $\Delta=9$ suffices.
Thm [C.-Rabern '13+]: To prove B-K, it suffices to show that if $\chi=\Delta=9$, then G contains the subgraph $K_{3} \vee \overline{K_{6}}$.

- Recoloring arguments
- Forbidden subgraphs via list-coloring

What else is known?

Thm [Kostochka '80]: To prove B-K, $\Delta=9$ suffices.
Thm [C.-Rabern '13+]: To prove B-K, it suffices to show that if $\chi=\Delta=9$, then G contains the subgraph $K_{3} \vee \overline{K_{6}}$.

- Recoloring arguments
- Forbidden subgraphs via list-coloring

Thm [Kostochka '80]: If $\chi \geq \Delta$ then G has a $K_{\Delta-28}$.

What else is known?

Thm [Kostochka '80]: To prove B-K, $\Delta=9$ suffices.
Thm [C.-Rabern '13+]: To prove B-K, it suffices to show that if $\chi=\Delta=9$, then G contains the subgraph $K_{3} \vee \overline{K_{6}}$.

- Recoloring arguments
- Forbidden subgraphs via list-coloring

Thm [Kostochka '80]: If $\chi \geq \Delta$ then G has a $K_{\Delta-28}$. Thm [Mozhan '83]: If $\chi \geq \Delta \geq 31$ then G has a $K_{\Delta-3}$.

What else is known?

Thm [Kostochka '80]: To prove B-K, $\Delta=9$ suffices.
Thm [C.-Rabern '13+]: To prove B-K, it suffices to show that if $\chi=\Delta=9$, then G contains the subgraph $K_{3} \vee \overline{K_{6}}$.

- Recoloring arguments
- Forbidden subgraphs via list-coloring

Thm [Kostochka '80]: If $\chi \geq \Delta$ then G has a $K_{\Delta-28}$.
Thm [Mozhan '83]: If $\chi \geq \Delta \geq 31$ then G has a $K_{\Delta-3}$.
Thm [Reed '99]: B-K is true when $\Delta \geq 10^{14}$.

What else is known?

Thm [Kostochka '80]: To prove B-K, $\Delta=9$ suffices.
Thm [C.-Rabern '13+]: To prove B-K, it suffices to show that if $\chi=\Delta=9$, then G contains the subgraph $K_{3} \vee \overline{K_{6}}$.

- Recoloring arguments
- Forbidden subgraphs via list-coloring

Thm [Kostochka '80]: If $\chi \geq \Delta$ then G has a $K_{\Delta-28}$.
Thm [Mozhan '83]: If $\chi \geq \Delta \geq 31$ then G has a $K_{\Delta-3}$.
Thm [Reed '99]: B-K is true when $\Delta \geq 10^{14}$.

- Conjectured by Beutelspacher and Hering in 1982.

What else is known?

Thm [Kostochka '80]: To prove B-K, $\Delta=9$ suffices.
Thm [C.-Rabern '13+]: To prove B-K, it suffices to show that if $\chi=\Delta=9$, then G contains the subgraph $K_{3} \vee \overline{K_{6}}$.

- Recoloring arguments
- Forbidden subgraphs via list-coloring

Thm [Kostochka '80]: If $\chi \geq \Delta$ then G has a $K_{\Delta-28}$.
Thm [Mozhan '83]: If $\chi \geq \Delta \geq 31$ then G has a $K_{\Delta-3}$.
Thm [Reed '99]: B-K is true when $\Delta \geq 10^{14}$.

- Conjectured by Beutelspacher and Hering in 1982.
- Probabilistic proof.

What else is known?

Thm [Kostochka '80]: To prove B-K, $\Delta=9$ suffices.
Thm [C.-Rabern '13+]: To prove B-K, it suffices to show that if $\chi=\Delta=9$, then G contains the subgraph $K_{3} \vee \overline{K_{6}}$.

- Recoloring arguments
- Forbidden subgraphs via list-coloring

Thm [Kostochka '80]: If $\chi \geq \Delta$ then G has a $K_{\Delta-28}$.
Thm [Mozhan '83]: If $\chi \geq \Delta \geq 31$ then G has a $K_{\Delta-3}$.
Thm [Reed '99]: B-K is true when $\Delta \geq 10^{14}$.

- Conjectured by Beutelspacher and Hering in 1982.
- Probabilistic proof.
- Tighter analysis might give $\Delta \geq 1000$, but not 100 .

What else is known?

Thm [Kostochka '80]: To prove B-K, $\Delta=9$ suffices.
Thm [C.-Rabern '13+]: To prove B-K, it suffices to show that if $\chi=\Delta=9$, then G contains the subgraph $K_{3} \vee \overline{K_{6}}$.

- Recoloring arguments
- Forbidden subgraphs via list-coloring

Thm [Kostochka '80]: If $\chi \geq \Delta$ then G has a $K_{\Delta-28}$.
Thm [Mozhan '83]: If $\chi \geq \Delta \geq 31$ then G has a $K_{\Delta-3}$.
Thm [Reed '99]: B-K is true when $\Delta \geq 10^{14}$.

- Conjectured by Beutelspacher and Hering in 1982.
- Probabilistic proof.
- Tighter analysis might give $\Delta \geq 1000$, but not 100 .

Thm [C.-Rabern '13+, today]: B-K is true for claw-free graphs.

Preliminaries

Def: We form a thickening of a graph G by replacing each vertex x with a clique T_{x}, such that T_{x} is joined to T_{y} iff $x y \in E(G)$.

Preliminaries

Def: We form a thickening of a graph G by replacing each vertex x with a clique T_{x}, such that T_{x} is joined to T_{y} iff $x y \in E(G)$.

Preliminaries

Def: We form a thickening of a graph G by replacing each vertex x with a clique T_{x}, such that T_{x} is joined to T_{y} iff $x y \in E(G)$.

Preliminaries

Def: We form a thickening of a graph G by replacing each vertex x with a clique T_{x}, such that T_{x} is joined to T_{y} iff $x y \in E(G)$.

Def: A graph G is f-choosable if when each vertex v gets a list $L(v)$ of colors of size $f(v), G$ has a proper coloring from its lists.

Preliminaries

Def: We form a thickening of a graph G by replacing each vertex x with a clique T_{x}, such that T_{x} is joined to T_{y} iff $x y \in E(G)$.

Def: A graph G is f-choosable if when each vertex v gets a list $L(v)$ of colors of size $f(v), G$ has a proper coloring from its lists. A graph is d_{1}-choosable if G is f-choosable, where for each $v \in G$ we have $f(v)=d(v)-1$.

Preliminaries

Def: We form a thickening of a graph G by replacing each vertex x with a clique T_{x}, such that T_{x} is joined to T_{y} iff $x y \in E(G)$.

Def: A graph G is f-choosable if when each vertex v gets a list $L(v)$ of colors of size $f(v), G$ has a proper coloring from its lists. A graph is d_{1}-choosable if G is f-choosable, where for each $v \in G$ we have $f(v)=d(v)-1$.

Key Idea: No d_{1}-choosable graph can appear as an induced subgraph in a minimal counterexample to B-K Conj.

Main Result

Main Thm: The B-K Conj. is true for claw-free graphs,

Main Result

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced $<, \Delta \geq 9$, and $\omega \leq \Delta-1$, then $\chi \leq \Delta-1$.

Main Result

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced $<, \Delta \geq 9$, and $\omega \leq \Delta-1$, then $\chi \leq \Delta-1$.
line graphs \subset quasi-line graphs \subset claw-free graphs

Main Result

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced $<, \Delta \geq 9$, and $\omega \leq \Delta-1$, then $\chi \leq \Delta-1$.

Def: A quasi-line graph is one in which for each vertex v we can cover $N(v)$ with two cliques.
line graphs \subset quasi-line graphs \subset claw-free graphs

Main Result

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced $<, \Delta \geq 9$, and $\omega \leq \Delta-1$, then $\chi \leq \Delta-1$.

Def: A quasi-line graph is one in which for each vertex v we can cover $N(v)$ with two cliques.
line graphs \subset quasi-line graphs \subset claw-free graphs

Main Result

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced $<, \Delta \geq 9$, and $\omega \leq \Delta-1$, then $\chi \leq \Delta-1$.

Def: A quasi-line graph is one in which for each vertex v we can cover $N(v)$ with two cliques.
line graphs \subset quasi-line graphs \subset claw-free graphs

Main Result

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced $<, \Delta \geq 9$, and $\omega \leq \Delta-1$, then $\chi \leq \Delta-1$.

Def: A quasi-line graph is one in which for each vertex v we can cover $N(v)$ with two cliques.
line graphs \subset quasi-line graphs \subset claw-free graphs

First Step: B-K Conj. is true for quasi-line graphs.

Main Result

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced $<, \Delta \geq 9$, and $\omega \leq \Delta-1$, then $\chi \leq \Delta-1$.

Def: A quasi-line graph is one in which for each vertex v we can cover $N(v)$ with two cliques.
line graphs \subset quasi-line graphs \subset claw-free graphs

First Step: B-K Conj. is true for quasi-line graphs.
Key Lemma (Second Step): If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that $N(v)$ is a thickening of C_{5}.

Main Result

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced $<, \Delta \geq 9$, and $\omega \leq \Delta-1$, then $\chi \leq \Delta-1$.

Def: A quasi-line graph is one in which for each vertex v we can cover $N(v)$ with two cliques.
line graphs \subset quasi-line graphs \subset claw-free graphs

First Step: B-K Conj. is true for quasi-line graphs.
Key Lemma (Second Step): If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that $N(v)$ is a thickening of C_{5}.

Main Result

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced $<, \Delta \geq 9$, and $\omega \leq \Delta-1$, then $\chi \leq \Delta-1$.

Def: A quasi-line graph is one in which for each vertex v we can cover $N(v)$ with two cliques.
line graphs \subset quasi-line graphs \subset claw-free graphs

First Step: B-K Conj. is true for quasi-line graphs.
Key Lemma (Second Step): If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that $N(v)$ is a thickening of C_{5}.
Final Step: Since G is claw-free, nbrs of verts in the thickening attach in a structured way,

Main Result

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced $<, \Delta \geq 9$, and $\omega \leq \Delta-1$, then $\chi \leq \Delta-1$.

Def: A quasi-line graph is one in which for each vertex v we can cover $N(v)$ with two cliques.
line graphs \subset quasi-line graphs \subset claw-free graphs

First Step: B-K Conj. is true for quasi-line graphs.
Key Lemma (Second Step): If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that $N(v)$ is a thickening of C_{5}.
Final Step: Since G is claw-free, nbrs of verts in the thickening attach in a structured way, so we get a d_{1}-choosable subgraph.

Gallery of d_{1}-choosble graphs

Gallery of d_{1}-choosble graphs

Gallery of d_{1}-choosble graphs

Gallery of d_{1}-choosble graphs

Key Lemma

Key Lemma: If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that $N(v)$ is a thickening of C_{5}.

Key Lemma

Key Lemma: If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that $N(v)$ is a thickening of C_{5}. Suffices to prove:

Key Lemma

Key Lemma: If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that $N(v)$ is a thickening of C_{5}. Suffices to prove:
Lemma 1: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}.

Key Lemma

Key Lemma: If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that $N(v)$ is a thickening of C_{5}. Suffices to prove:
Lemma 1: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}.

Key Lemma

Key Lemma: If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that $N(v)$ is a thickening of C_{5}. Suffices to prove:
Lemma 1: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}.

Key Lemma

Key Lemma: If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that $N(v)$ is a thickening of C_{5}. Suffices to prove:
Lemma 1: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}.

Claim 1: H contains an induced C_{4} or C_{5}.

Key Lemma

Key Lemma: If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that $N(v)$ is a thickening of C_{5}. Suffices to prove:
Lemma 1: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}.

Claim 1: H contains an induced C_{4} or C_{5}.
If not, then H is chordal, since $\alpha(H) \leq 2$.

Key Lemma

Key Lemma: If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that $N(v)$ is a thickening of C_{5}. Suffices to prove:
Lemma 1: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}.

Claim 1: H contains an induced C_{4} or C_{5}. If not, then H is chordal, since $\alpha(H) \leq 2$. So H has a simplicial vertex x.

Key Lemma

Key Lemma: If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that $N(v)$ is a thickening of C_{5}. Suffices to prove:
Lemma 1: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}.

Claim 1: H contains an induced C_{4} or C_{5}.
If not, then H is chordal, since $\alpha(H) \leq 2$. So H has a simplicial vertex x. Now $N_{H}[x]$ and $V(H)-N_{H}[x]$ are cliques covering H.

Key Lemma (cont'd)

[Lemma 1]: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}. Suppose not.

Key Lemma (cont'd)

[Lemma 1]: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}. Suppose not. Claim 2: H contains no induced C_{4}.

Key Lemma (cont'd)

[Lemma 1]: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}. Suppose not. Claim 2: H contains no induced C_{4}.
Say instead H has an induced $C_{4}, x_{1} x_{2} x_{3} x_{4}$.

Key Lemma (cont'd)

[Lemma 1]: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}. Suppose not. Claim 2: H contains no induced C_{4}.
Say instead H has an induced $C_{4}, x_{1} x_{2} x_{3} x_{4}$. Since $\alpha(H) \leq 2$, each $y \in V(H) \backslash\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ has a nbr in $\left\{x_{1}, x_{3}\right\}$ and in $\left\{x_{2}, x_{4}\right\}$.

Key Lemma (cont'd)

[Lemma 1]: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}. Suppose not. Claim 2: H contains no induced C_{4}.
Say instead H has an induced $C_{4}, x_{1} x_{2} x_{3} x_{4}$. Since $\alpha(H) \leq 2$, each $y \in V(H) \backslash\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ has a nbr in $\left\{x_{1}, x_{3}\right\}$ and in $\left\{x_{2}, x_{4}\right\}$.

Key Lemma (cont'd)

[Lemma 1]: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}. Suppose not. Claim 2: H contains no induced C_{4}.
Say instead H has an induced $C_{4}, x_{1} x_{2} x_{3} x_{4}$. Since $\alpha(H) \leq 2$, each $y \in V(H) \backslash\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ has a nbr in $\left\{x_{1}, x_{3}\right\}$ and in $\left\{x_{2}, x_{4}\right\}$.

Key Lemma (cont'd)

[Lemma 1]: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}. Suppose not. Claim 2: H contains no induced C_{4}.
Say instead H has an induced $C_{4}, x_{1} x_{2} x_{3} x_{4}$. Since $\alpha(H) \leq 2$, each $y \in V(H) \backslash\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ has a nbr in $\left\{x_{1}, x_{3}\right\}$ and in $\left\{x_{2}, x_{4}\right\}$.

- If y is adj. to 3 or $4 x_{i}$'s, we get a d_{1}-choosable subgraph.

Key Lemma (cont'd)

[Lemma 1]: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}. Suppose not. Claim 2: H contains no induced C_{4}.
Say instead H has an induced $C_{4}, x_{1} x_{2} x_{3} x_{4}$. Since $\alpha(H) \leq 2$, each $y \in V(H) \backslash\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ has a nbr in $\left\{x_{1}, x_{3}\right\}$ and in $\left\{x_{2}, x_{4}\right\}$.

- If y is adj. to 3 or $4 x_{i}$'s, we get a d_{1}-choosable subgraph.

Key Lemma (cont'd)

[Lemma 1]: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}. Suppose not. Claim 2: H contains no induced C_{4}.
Say instead H has an induced $C_{4}, x_{1} x_{2} x_{3} x_{4}$. Since $\alpha(H) \leq 2$, each $y \in V(H) \backslash\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ has a nbr in $\left\{x_{1}, x_{3}\right\}$ and in $\left\{x_{2}, x_{4}\right\}$.

- If y is adj. to 3 or $4 x_{i}$'s, we get a d_{1}-choosable subgraph.

Key Lemma (cont'd)

[Lemma 1]: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}. Suppose not. Claim 2: H contains no induced C_{4}.
Say instead H has an induced $C_{4}, x_{1} x_{2} x_{3} x_{4}$. Since $\alpha(H) \leq 2$, each $y \in V(H) \backslash\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ has a nbr in $\left\{x_{1}, x_{3}\right\}$ and in $\left\{x_{2}, x_{4}\right\}$.

- If y is adj. to 3 or $4 x_{i}$'s, we get a d_{1}-choosable subgraph.
- Suppose all y's are adjacent to same or opposite side of C_{4}.

Key Lemma (cont'd)

[Lemma 1]: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}. Suppose not. Claim 2: H contains no induced C_{4}.
Say instead H has an induced $C_{4}, x_{1} x_{2} x_{3} x_{4}$. Since $\alpha(H) \leq 2$, each $y \in V(H) \backslash\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ has a nbr in $\left\{x_{1}, x_{3}\right\}$ and in $\left\{x_{2}, x_{4}\right\}$.

- If y is adj. to 3 or $4 x_{i}$'s, we get a d_{1}-choosable subgraph.
- Suppose all y's are adjacent to same or opposite side of C_{4}.

Key Lemma (cont'd)

[Lemma 1]: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}. Suppose not. Claim 2: H contains no induced C_{4}.
Say instead H has an induced $C_{4}, x_{1} x_{2} x_{3} x_{4}$. Since $\alpha(H) \leq 2$, each $y \in V(H) \backslash\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ has a nbr in $\left\{x_{1}, x_{3}\right\}$ and in $\left\{x_{2}, x_{4}\right\}$.

- If y is adj. to 3 or $4 x_{i}$'s, we get a d_{1}-choosable subgraph.
- Suppose all y's are adjacent to same or opposite side of C_{4}.

If not, $y_{1} \leftrightarrow x_{1}, x_{2}$ and $y_{2} \leftrightarrow x_{2}, x_{3}$.

Key Lemma (cont'd)

[Lemma 1]: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}. Suppose not. Claim 2: H contains no induced C_{4}.
Say instead H has an induced $C_{4}, x_{1} x_{2} x_{3} x_{4}$. Since $\alpha(H) \leq 2$, each $y \in V(H) \backslash\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ has a nbr in $\left\{x_{1}, x_{3}\right\}$ and in $\left\{x_{2}, x_{4}\right\}$.

- If y is adj. to 3 or $4 x_{i}$'s, we get a d_{1}-choosable subgraph.
- Suppose all y's are adjacent to same or opposite side of C_{4}.

If not, $y_{1} \leftrightarrow x_{1}, x_{2}$ and $y_{2} \leftrightarrow x_{2}, x_{3}$.

Key Lemma (cont'd)

[Lemma 1]: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}. Suppose not. Claim 2: H contains no induced C_{4}.
Say instead H has an induced $C_{4}, x_{1} x_{2} x_{3} x_{4}$. Since $\alpha(H) \leq 2$, each $y \in V(H) \backslash\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ has a nbr in $\left\{x_{1}, x_{3}\right\}$ and in $\left\{x_{2}, x_{4}\right\}$.

- If y is adj. to 3 or $4 x_{i}$'s, we get a d_{1}-choosable subgraph.
- Suppose all y's are adjacent to same or opposite side of C_{4}. If not, $y_{1} \leftrightarrow x_{1}, x_{2}$ and $y_{2} \leftrightarrow x_{2}, x_{3}$. So $y_{1} \leftrightarrow y_{2}$, or else $\left\{y_{1}, y_{2}, x_{4}, v\right\}$ is a claw. So $\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, v\right\}$ gives D_{7}.

Key Lemma (cont'd)

[Lemma 1]: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}. Suppose not. Claim 2: H contains no induced C_{4}.
Say instead H has an induced $C_{4}, x_{1} x_{2} x_{3} x_{4}$. Since $\alpha(H) \leq 2$, each $y \in V(H) \backslash\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ has a nbr in $\left\{x_{1}, x_{3}\right\}$ and in $\left\{x_{2}, x_{4}\right\}$.

- If y is adj. to 3 or $4 x_{i}$'s, we get a d_{1}-choosable subgraph.
- Suppose all y's are adjacent to same or opposite side of C_{4}.

If not, $y_{1} \leftrightarrow x_{1}, x_{2}$ and $y_{2} \leftrightarrow x_{2}, x_{3}$. So $y_{1} \leftrightarrow y_{2}$, or else $\left\{y_{1}, y_{2}, x_{4}, v\right\}$ is a claw. So $\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, v\right\}$ gives D_{7}. So H contains a C_{5}.

Key Lemma (cont'd)

[Lemma 1]: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}. Suppose not. Claim 2: H contains no induced C_{4}.
Say instead H has an induced $C_{4}, x_{1} \times_{2} \times_{3} \times_{4}$. Since $\alpha(H) \leq 2$, each $y \in V(H) \backslash\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ has a nbr in $\left\{x_{1}, x_{3}\right\}$ and in $\left\{x_{2}, x_{4}\right\}$.

- If y is adj. to 3 or $4 x_{i}$'s, we get a d_{1}-choosable subgraph.
- Suppose all y's are adjacent to same or opposite side of C_{4}. If not, $y_{1} \leftrightarrow x_{1}, x_{2}$ and $y_{2} \leftrightarrow x_{2}, x_{3}$. So $y_{1} \leftrightarrow y_{2}$, or else $\left\{y_{1}, y_{2}, x_{4}, v\right\}$ is a claw. So $\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, v\right\}$ gives D_{7}. So H contains a C_{5}. Each other neighbor y of v must be adj. to at least 3 succesive verts on the C_{5} or we get a claw.

Key Lemma (cont'd)

[Lemma 1]: Let H be a graph such that no induced subgraph of $\{v\} \vee H$ is d_{1}-choosable and $\alpha(H) \leq 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_{5}. Suppose not. Claim 2: H contains no induced C_{4}.
Say instead H has an induced $C_{4}, x_{1} x_{2} x_{3} x_{4}$. Since $\alpha(H) \leq 2$, each $y \in V(H) \backslash\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ has a nbr in $\left\{x_{1}, x_{3}\right\}$ and in $\left\{x_{2}, x_{4}\right\}$.

- If y is adj. to 3 or $4 x_{i}$'s, we get a d_{1}-choosable subgraph.
- Suppose all y's are adjacent to same or opposite side of C_{4}. If not, $y_{1} \leftrightarrow x_{1}, x_{2}$ and $y_{2} \leftrightarrow x_{2}, x_{3}$. So $y_{1} \leftrightarrow y_{2}$, or else $\left\{y_{1}, y_{2}, x_{4}, v\right\}$ is a claw. So $\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, v\right\}$ gives D_{7}.
So H contains a C_{5}. Each other neighbor y of v must be adj. to at least 3 succesive verts on the C_{5} or we get a claw. If y is adj. to 4 or 5 cycle verts, we get a d_{1}-choosable subgraph.

Open Problems

Open Problems

- Borodin-Kostochka Conjecture

Open Problems

- Borodin-Kostochka Conjecture
- List version of B-K Conjecture

Open Problems

- Borodin-Kostochka Conjecture
- List version of B-K Conjecture
- Recently proved for large Δ by Choi, Kierstead, Rabern, and Reed

Open Problems

- Borodin-Kostochka Conjecture
- List version of B-K Conjecture
- Recently proved for large Δ by Choi, Kierstead, Rabern, and Reed
- List version of B-K for claw-free graphs

Open Problems

- Borodin-Kostochka Conjecture
- List version of B-K Conjecture
- Recently proved for large Δ by Choi, Kierstead, Rabern, and Reed
- List version of B-K for claw-free graphs
- Our reduction from claw-free to quasi-line graphs still works for list coloring

Open Problems

- Borodin-Kostochka Conjecture
- List version of B-K Conjecture
- Recently proved for large Δ by Choi, Kierstead, Rabern, and Reed
- List version of B-K for claw-free graphs
- Our reduction from claw-free to quasi-line graphs still works for list coloring
- We proved this for circular interval graphs

Open Problems

- Borodin-Kostochka Conjecture
- List version of B-K Conjecture
- Recently proved for large Δ by Choi, Kierstead, Rabern, and Reed
- List version of B-K for claw-free graphs
- Our reduction from claw-free to quasi-line graphs still works for list coloring
- We proved this for circular interval graphs
- and line graphs of graphs with $\delta \geq 7$

Open Problems

- Borodin-Kostochka Conjecture
- List version of B-K Conjecture
- Recently proved for large Δ by Choi, Kierstead, Rabern, and Reed
- List version of B-K for claw-free graphs
- Our reduction from claw-free to quasi-line graphs still works for list coloring
- We proved this for circular interval graphs
- and line graphs of graphs with $\delta \geq 7$
- Fractional version of B-K Conjecture

Open Problems

- Borodin-Kostochka Conjecture
- List version of B-K Conjecture
- Recently proved for large Δ by Choi, Kierstead, Rabern, and Reed
- List version of B-K for claw-free graphs
- Our reduction from claw-free to quasi-line graphs still works for list coloring
- We proved this for circular interval graphs
- and line graphs of graphs with $\delta \geq 7$
- Fractional version of B-K Conjecture
- 2-fold coloring version

Summary

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced $<, \Delta \geq 9$, and $\omega \leq \Delta-1$, then $\chi \leq \Delta-1$.
Key Idea: A minimal counterexample to B-K Conjecture cannot contain a d_{1}-choosable graph as an induced subgraph.

- First Step: B-K Conj. is true for quasi-line graphs.
- Key Lemma: If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that $N(v)$ is a thickening of C_{5}.

- Final Step: Since G is claw-free, nbrs of verts in thickening attach in a structured way, so we get a d_{1}-choosable subgraph.

