Coloring a claw-free graph with Δ -1 colors

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Joint with Landon Rabern Slides available on my webpage

> George Mason CAGS 15 February 2013

Prop: For all *G* we have $\chi \leq \Delta + 1$.

Prop: For all *G* we have $\chi \leq \Delta + 1$. **Thm** [Brooks 1941]: If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$.

Prop: For all *G* we have $\chi \leq \Delta + 1$. **Thm** [Brooks 1941]: If $\Delta \geq 3$ and $\omega \leq \Delta$ then $\chi \leq \Delta$. **Borodin-Kostochka Conj.** (B-K) [1977]: If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta \ge 9$?

Prop: For all G we have $\chi \leq \Delta + 1$. **Thm** [Brooks 1941]: If $\Delta > 3$ and $\omega < \Delta$ then $\chi < \Delta$. Borodin-Kostochka Conj. (B-K) [1977]: If $\Delta \geq 9$ and $\omega \leq \Delta - 1$ then $\chi \leq \Delta - 1$.

Why $\Delta - 1$?

Thm [Kostochka '80]: To prove B-K, $\Delta = 9$ suffices.

Thm [Kostochka '80]: To prove B-K, $\Delta = 9$ suffices.

Thm [C.-Rabern '13+]: To prove B-K, it suffices to show that if

 $\chi = \Delta = 9$, then G contains the subgraph $K_3 \vee \overline{K_6}$.

- **Thm** [Kostochka '80]: To prove B-K, $\Delta = 9$ suffices.
- Thm [C.-Rabern '13+]: To prove B-K, it suffices to show that if
 - $\chi = \Delta = 9$, then G contains the subgraph $K_3 \vee \overline{K_6}$.
 - Recoloring arguments

- **Thm** [Kostochka '80]: To prove B-K, $\Delta = 9$ suffices.
- Thm [C.-Rabern '13+]: To prove B-K, it suffices to show that if
 - $\chi = \Delta = 9$, then G contains the subgraph $K_3 \vee \overline{K_6}$.
 - Recoloring arguments
 - Forbidden subgraphs via list-coloring

- **Thm** [Kostochka '80]: To prove B-K, $\Delta = 9$ suffices.
- **Thm** [C.-Rabern '13+]: To prove B-K, it suffices to show that if
 - $\chi = \Delta = 9$, then G contains the subgraph $K_3 \vee \overline{K_6}$.
 - Recoloring arguments
 - Forbidden subgraphs via list-coloring

Thm [Kostochka '80]: If $\chi \ge \Delta$ then G has a $K_{\Delta-28}$.

Thm [Kostochka '80]: To prove B-K, $\Delta = 9$ suffices.

Thm [C.-Rabern '13+]: To prove B-K, it suffices to show that if $\chi = \Delta = 9$, then G contains the subgraph $K_3 \vee \overline{K_6}$.

- Recoloring arguments
- Forbidden subgraphs via list-coloring

Thm [Kostochka '80]: If $\chi \ge \Delta$ then G has a $K_{\Delta-28}$. Thm [Mozhan '83]: If $\chi \ge \Delta \ge 31$ then G has a $K_{\Delta-3}$.

Thm [Kostochka '80]: To prove B-K, $\Delta = 9$ suffices.

Thm [C.-Rabern '13+]: To prove B-K, it suffices to show that if $\chi = \Delta = 9$, then G contains the subgraph $K_3 \vee \overline{K_6}$.

- Recoloring arguments
- Forbidden subgraphs via list-coloring

Thm [Kostochka '80]: If $\chi \ge \Delta$ then G has a $K_{\Delta-28}$. Thm [Mozhan '83]: If $\chi \ge \Delta \ge 31$ then G has a $K_{\Delta-3}$.

Thm [Reed '99]: B-K is true when $\Delta \ge 10^{14}$.

Thm [Kostochka '80]: To prove B-K, $\Delta = 9$ suffices.

Thm [C.-Rabern '13+]: To prove B-K, it suffices to show that if $\chi = \Delta = 9$, then G contains the subgraph $K_3 \vee \overline{K_6}$.

- Recoloring arguments
- Forbidden subgraphs via list-coloring

Thm [Kostochka '80]: If $\chi \ge \Delta$ then G has a $K_{\Delta-28}$. Thm [Mozhan '83]: If $\chi \ge \Delta \ge 31$ then G has a $K_{\Delta-3}$.

Thm [Reed '99]: B-K is true when $\Delta \ge 10^{14}$.

Conjectured by Beutelspacher and Hering in 1982.

Thm [Kostochka '80]: To prove B-K, $\Delta = 9$ suffices.

Thm [C.-Rabern '13+]: To prove B-K, it suffices to show that if $\chi = \Delta = 9$, then G contains the subgraph $K_3 \vee \overline{K_6}$.

- Recoloring arguments
- Forbidden subgraphs via list-coloring

Thm [Kostochka '80]: If $\chi \ge \Delta$ then G has a $K_{\Delta-28}$. Thm [Mozhan '83]: If $\chi \ge \Delta \ge 31$ then G has a $K_{\Delta-3}$.

Thm [Reed '99]: B-K is true when $\Delta \ge 10^{14}$.

- Conjectured by Beutelspacher and Hering in 1982.
- Probabilistic proof.

Thm [Kostochka '80]: To prove B-K, $\Delta = 9$ suffices.

Thm [C.-Rabern '13+]: To prove B-K, it suffices to show that if $\chi = \Delta = 9$, then G contains the subgraph $K_3 \vee \overline{K_6}$.

- Recoloring arguments
- Forbidden subgraphs via list-coloring

Thm [Kostochka '80]: If $\chi \ge \Delta$ then G has a $K_{\Delta-28}$. Thm [Mozhan '83]: If $\chi \ge \Delta \ge 31$ then G has a $K_{\Delta-3}$.

Thm [Reed '99]: B-K is true when $\Delta \ge 10^{14}$.

- Conjectured by Beutelspacher and Hering in 1982.
- Probabilistic proof.
- Tighter analysis might give $\Delta \ge 1000$, but not 100.

Thm [Kostochka '80]: To prove B-K, $\Delta = 9$ suffices.

Thm [C.-Rabern '13+]: To prove B-K, it suffices to show that if $\chi = \Delta = 9$, then G contains the subgraph $K_3 \vee \overline{K_6}$.

- Recoloring arguments
- Forbidden subgraphs via list-coloring

Thm [Kostochka '80]: If $\chi \ge \Delta$ then G has a $K_{\Delta-28}$. Thm [Mozhan '83]: If $\chi \ge \Delta \ge 31$ then G has a $K_{\Delta-3}$.

Thm [Reed '99]: B-K is true when $\Delta \ge 10^{14}$.

- Conjectured by Beutelspacher and Hering in 1982.
- Probabilistic proof.
- Tighter analysis might give $\Delta \ge 1000$, but not 100.

Thm [C.-Rabern '13+, today]: B-K is true for claw-free graphs.

Def: We form a thickening of a graph G by replacing each vertex x with a clique T_x , such that T_x is joined to T_y iff $xy \in E(G)$.

Def: We form a thickening of a graph G by replacing each vertex x with a clique T_x , such that T_x is joined to T_y iff $xy \in E(G)$.

Def: We form a thickening of a graph G by replacing each vertex x with a clique T_x , such that T_x is joined to T_y iff $xy \in E(G)$.

Def: We form a thickening of a graph G by replacing each vertex x with a clique T_x , such that T_x is joined to T_y iff $xy \in E(G)$.

Def: A graph G is f-choosable if when each vertex v gets a list L(v) of colors of size f(v), G has a proper coloring from its lists.

Def: We form a thickening of a graph G by replacing each vertex x with a clique T_x , such that T_x is joined to T_y iff $xy \in E(G)$.

Def: A graph G is f-choosable if when each vertex v gets a list L(v) of colors of size f(v), G has a proper coloring from its lists. A graph is d_1 -choosable if G is f-choosable, where for each $v \in G$ we have f(v) = d(v) - 1.

Def: We form a thickening of a graph G by replacing each vertex x with a clique T_x , such that T_x is joined to T_y iff $xy \in E(G)$.

Def: A graph G is f-choosable if when each vertex v gets a list L(v) of colors of size f(v), G has a proper coloring from its lists. A graph is d_1 -choosable if G is f-choosable, where for each $v \in G$ we have f(v) = d(v) - 1.

Key Idea: No d_1 -choosable graph can appear as an induced subgraph in a minimal counterexample to B-K Conj.

Main Result

Main Thm: The B-K Conj. is true for claw-free graphs,

Main Result

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced \triangleleft , $\Delta \geq 9$, and $\omega \leq \Delta - 1$, then $\chi \leq \Delta - 1$.

Main Result

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced \triangleleft , $\Delta \ge 9$, and $\omega \le \Delta - 1$, then $\chi \le \Delta - 1$.

line graphs \subset quasi-line graphs \subset claw-free graphs

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced \triangleleft , $\Delta \ge 9$, and $\omega \le \Delta - 1$, then $\chi \le \Delta - 1$.

Def: A quasi-line graph is one in which for each vertex v we can cover N(v) with two cliques.

line graphs \subset quasi-line graphs \subset claw-free graphs

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced \triangleleft , $\Delta \ge 9$, and $\omega \le \Delta - 1$, then $\chi \le \Delta - 1$.

Def: A quasi-line graph is one in which for each vertex v we can cover N(v) with two cliques.

line graphs \subset quasi-line graphs \subset claw-free graphs

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced \triangleleft , $\Delta \ge 9$, and $\omega \le \Delta - 1$, then $\chi \le \Delta - 1$.

Def: A quasi-line graph is one in which for each vertex v we can cover N(v) with two cliques.

line graphs \subset quasi-line graphs \subset claw-free graphs

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced \triangleleft , $\Delta \ge 9$, and $\omega \le \Delta - 1$, then $\chi \le \Delta - 1$.

Def: A quasi-line graph is one in which for each vertex v we can cover N(v) with two cliques.

line graphs \subset quasi-line graphs \subset claw-free graphs

First Step: B-K Conj. is true for quasi-line graphs.

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced \triangleleft , $\Delta \ge 9$, and $\omega \le \Delta - 1$, then $\chi \le \Delta - 1$.

Def: A quasi-line graph is one in which for each vertex v we can cover N(v) with two cliques.

line graphs \subset quasi-line graphs \subset claw-free graphs

First Step: B-K Conj. is true for quasi-line graphs.

Key Lemma (Second Step): If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that N(v) is a thickening of C_5 .

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced \triangleleft , $\Delta \ge 9$, and $\omega \le \Delta - 1$, then $\chi \le \Delta - 1$.

Def: A quasi-line graph is one in which for each vertex v we can cover N(v) with two cliques.

line graphs \subset quasi-line graphs \subset claw-free graphs

First Step: B-K Conj. is true for quasi-line graphs.

Key Lemma (Second Step): If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that N(v) is a thickening of C_5 .

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced \triangleleft , $\Delta \ge 9$, and $\omega \le \Delta - 1$, then $\chi \le \Delta - 1$.

Def: A quasi-line graph is one in which for each vertex v we can cover N(v) with two cliques.

line graphs \subset quasi-line graphs \subset claw-free graphs

First Step: B-K Conj. is true for quasi-line graphs.

Key Lemma (Second Step): If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that N(v) is a thickening of C_5 .

Final Step: Since *G* is claw-free, nbrs of verts in the thickening attach in a structured way,

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced \triangleleft , $\Delta \ge 9$, and $\omega \le \Delta - 1$, then $\chi \le \Delta - 1$.

Def: A quasi-line graph is one in which for each vertex v we can cover N(v) with two cliques.

line graphs \subset quasi-line graphs \subset claw-free graphs

First Step: B-K Conj. is true for quasi-line graphs.

Key Lemma (Second Step): If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that N(v) is a thickening of C_5 .

Final Step: Since G is claw-free, nbrs of verts in the thickening attach in a structured way, so we get a d_1 -choosable subgraph.

 D_6

 D_6

Key Lemma: If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that N(v) is a thickening of C_5 .

Key Lemma: If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that N(v) is a thickening of C_5 . Suffices to prove:

Key Lemma: If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that N(v) is a thickening of C_5 . Suffices to prove:

Lemma 1: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 .

Key Lemma: If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that N(v) is a thickening of C_5 . Suffices to prove:

Lemma 1: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 .

Key Lemma: If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that N(v) is a thickening of C_5 . Suffices to prove:

Lemma 1: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 .

Key Lemma: If *G* is claw-free, but not quasi-line, and *G* is a minimal counterexample to the B-K Conjecture, then *G* contains a vertex *v* such that N(v) is a thickening of C_5 . Suffices to prove:

Lemma 1: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 .

Claim 1: *H* contains an induced C_4 or C_5 .

Key Lemma: If *G* is claw-free, but not quasi-line, and *G* is a minimal counterexample to the B-K Conjecture, then *G* contains a vertex *v* such that N(v) is a thickening of C_5 . Suffices to prove: **Lemma 1:** Let *H* be a graph such that no induced subgraph of

 $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_5 .

Claim 1: *H* contains an induced C_4 or C_5 . If not, then *H* is chordal, since $\alpha(H) \leq 2$.

Key Lemma: If *G* is claw-free, but not quasi-line, and *G* is a minimal counterexample to the B-K Conjecture, then *G* contains a vertex *v* such that N(v) is a thickening of C_5 . Suffices to prove: **Lemma 1:** Let *H* be a graph such that no induced subgraph of

 $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_5 .

Claim 1: *H* contains an induced C_4 or C_5 . If not, then *H* is chordal, since $\alpha(H) \leq 2$. So *H* has a simplicial vertex *x*.

Key Lemma: If *G* is claw-free, but not quasi-line, and *G* is a minimal counterexample to the B-K Conjecture, then *G* contains a vertex *v* such that N(v) is a thickening of C_5 . Suffices to prove: **Lemma 1:** Let *H* be a graph such that no induced subgraph of

 $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) H can be covered by 2 cliques or (ii) H is a thickening of C_5 .

Claim 1: *H* contains an induced C_4 or C_5 . If not, then *H* is chordal, since $\alpha(H) \leq 2$. So *H* has a simplicial vertex *x*. Now $N_H[x]$ and $V(H) - N_H[x]$ are cliques covering *H*.

[Lemma 1]: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 . Suppose not.

[Lemma 1]: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 . Suppose not. **Claim 2:** *H* contains no induced C_4 .

[Lemma 1]: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 . Suppose not. **Claim 2:** *H* contains no induced C_4 . Say instead *H* has an induced C_4 , $x_1x_2x_3x_4$.

[Lemma 1]: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 . Suppose not. **Claim 2:** *H* contains no induced C_4 . Say instead *H* has an induced C_4 , $x_1x_2x_3x_4$. Since $\alpha(H) \le 2$, each $y \in V(H) \setminus \{x_1, x_2, x_3, x_4\}$ has a nbr in $\{x_1, x_3\}$ and in $\{x_2, x_4\}$.

[Lemma 1]: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 . Suppose not. **Claim 2:** *H* contains no induced C_4 . Say instead *H* has an induced C_4 , $x_1x_2x_3x_4$. Since $\alpha(H) \le 2$, each $y \in V(H) \setminus \{x_1, x_2, x_3, x_4\}$ has a nbr in $\{x_1, x_3\}$ and in $\{x_2, x_4\}$.

[Lemma 1]: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 . Suppose not. **Claim 2:** *H* contains no induced C_4 . Say instead *H* has an induced C_4 , $x_1x_2x_3x_4$. Since $\alpha(H) \le 2$, each $y \in V(H) \setminus \{x_1, x_2, x_3, x_4\}$ has a nbr in $\{x_1, x_3\}$ and in $\{x_2, x_4\}$.

[Lemma 1]: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 . Suppose not. **Claim 2:** *H* contains no induced C_4 . Say instead *H* has an induced C_4 . Since $\alpha(H) \le 2$, each $y \in V(H) \setminus \{x_1, x_2, x_3, x_4\}$ has a nbr in $\{x_1, x_3\}$ and in $\{x_2, x_4\}$.

• If y is adj. to 3 or 4 x_i 's, we get a d_1 -choosable subgraph.

[Lemma 1]: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 . Suppose not. **Claim 2:** *H* contains no induced C_4 . Say instead *H* has an induced C_4 . Since $\alpha(H) \le 2$, each $y \in V(H) \setminus \{x_1, x_2, x_3, x_4\}$ has a nbr in $\{x_1, x_3\}$ and in $\{x_2, x_4\}$.

• If y is adj. to 3 or 4 x_i 's, we get a d_1 -choosable subgraph.

[Lemma 1]: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 . Suppose not. **Claim 2:** *H* contains no induced C_4 . Say instead *H* has an induced C_4 . Since $\alpha(H) \le 2$, each $y \in V(H) \setminus \{x_1, x_2, x_3, x_4\}$ has a nbr in $\{x_1, x_3\}$ and in $\{x_2, x_4\}$.

• If y is adj. to 3 or 4 x_i 's, we get a d_1 -choosable subgraph.

[Lemma 1]: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 . Suppose not. **Claim 2:** *H* contains no induced C_4 . Say instead *H* has an induced C_4 . Since $\alpha(H) \le 2$, each $y \in V(H) \setminus \{x_1, x_2, x_3, x_4\}$ has a nbr in $\{x_1, x_3\}$ and in $\{x_2, x_4\}$.

- If y is adj. to 3 or 4 x_i 's, we get a d_1 -choosable subgraph.
- ► Suppose all y's are adjacent to same or opposite side of C₄.

[Lemma 1]: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 . Suppose not. **Claim 2:** *H* contains no induced C_4 . Say instead *H* has an induced C_4 , $x_1x_2x_3x_4$. Since $\alpha(H) \le 2$, each $y \in V(H) \setminus \{x_1, x_2, x_3, x_4\}$ has a nbr in $\{x_1, x_3\}$ and in $\{x_2, x_4\}$.

- If y is adj. to 3 or 4 x_i 's, we get a d_1 -choosable subgraph.
- ► Suppose all y's are adjacent to same or opposite side of C₄.

[Lemma 1]: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 . Suppose not. **Claim 2:** *H* contains no induced C_4 . Say instead *H* has an induced C_4 . Since $\alpha(H) \le 2$, each $y \in V(H) \setminus \{x_1, x_2, x_3, x_4\}$ has a nbr in $\{x_1, x_3\}$ and in $\{x_2, x_4\}$.

- If y is adj. to 3 or 4 x_i 's, we get a d_1 -choosable subgraph.
- Suppose all y's are adjacent to same or opposite side of C₄. If not, y₁ ↔ x₁, x₂ and y₂ ↔ x₂, x₃.

[Lemma 1]: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 . Suppose not. **Claim 2:** *H* contains no induced C_4 . Say instead *H* has an induced C_4 . Since $\alpha(H) \le 2$, each $y \in V(H) \setminus \{x_1, x_2, x_3, x_4\}$ has a nbr in $\{x_1, x_3\}$ and in $\{x_2, x_4\}$.

- If y is adj. to 3 or 4 x_i 's, we get a d_1 -choosable subgraph.
- Suppose all y's are adjacent to same or opposite side of C₄. If not, y₁ ↔ x₁, x₂ and y₂ ↔ x₂, x₃.

[Lemma 1]: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 . Suppose not. **Claim 2:** *H* contains no induced C_4 . Say instead *H* has an induced C_4 . Since $\alpha(H) \le 2$, each $y \in V(H) \setminus \{x_1, x_2, x_3, x_4\}$ has a nbr in $\{x_1, x_3\}$ and in $\{x_2, x_4\}$.

• If y is adj. to 3 or 4 x_i 's, we get a d_1 -choosable subgraph.

Suppose all y's are adjacent to same or opposite side of C₄. If not, y₁ ↔ x₁, x₂ and y₂ ↔ x₂, x₃. So y₁ ↔ y₂, or else {y₁, y₂, x₄, v} is a claw. So {x₁, x₂, x₃, x₄, y₁, y₂, v} gives D₇.

[Lemma 1]: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 . Suppose not. **Claim 2:** *H* contains no induced C_4 . Say instead *H* has an induced C_4 . Since $\alpha(H) \le 2$, each $y \in V(H) \setminus \{x_1, x_2, x_3, x_4\}$ has a nbr in $\{x_1, x_3\}$ and in $\{x_2, x_4\}$.

• If y is adj. to 3 or 4 x_i 's, we get a d_1 -choosable subgraph.

Suppose all y's are adjacent to same or opposite side of C₄. If not, y₁ ↔ x₁, x₂ and y₂ ↔ x₂, x₃. So y₁ ↔ y₂, or else {y₁, y₂, x₄, v} is a claw. So {x₁, x₂, x₃, x₄, y₁, y₂, v} gives D₇.
So H contains a C₅.

Key Lemma (cont'd)

[Lemma 1]: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 . Suppose not. **Claim 2:** *H* contains no induced C_4 . Say instead *H* has an induced C_4 . Since $\alpha(H) \le 2$, each $y \in V(H) \setminus \{x_1, x_2, x_3, x_4\}$ has a nbr in $\{x_1, x_3\}$ and in $\{x_2, x_4\}$.

• If y is adj. to 3 or 4 x_i 's, we get a d_1 -choosable subgraph.

Suppose all y's are adjacent to same or opposite side of C₄. If not, y₁ ↔ x₁, x₂ and y₂ ↔ x₂, x₃. So y₁ ↔ y₂, or else {y₁, y₂, x₄, v} is a claw. So {x₁, x₂, x₃, x₄, y₁, y₂, v} gives D₇.

So *H* contains a C_5 . Each other neighbor *y* of *v* must be adj. to at least 3 succesive verts on the C_5 or we get a claw.

Key Lemma (cont'd)

[Lemma 1]: Let *H* be a graph such that no induced subgraph of $\{v\} \lor H$ is d_1 -choosable and $\alpha(H) \le 2$. Either (i) *H* can be covered by 2 cliques or (ii) *H* is a thickening of C_5 . Suppose not. **Claim 2:** *H* contains no induced C_4 . Say instead *H* has an induced C_4 , $x_1x_2x_3x_4$. Since $\alpha(H) \le 2$, each $y \in V(H) \setminus \{x_1, x_2, x_3, x_4\}$ has a nbr in $\{x_1, x_3\}$ and in $\{x_2, x_4\}$.

• If y is adj. to 3 or 4 x_i 's, we get a d_1 -choosable subgraph.

▶ Suppose all y's are adjacent to same or opposite side of C_4 . If not, $y_1 \leftrightarrow x_1, x_2$ and $y_2 \leftrightarrow x_2, x_3$. So $y_1 \leftrightarrow y_2$, or else $\{y_1, y_2, x_4, v\}$ is a claw. So $\{x_1, x_2, x_3, x_4, y_1, y_2, v\}$ gives D_7 .

So *H* contains a C_5 . Each other neighbor *y* of *v* must be adj. to at least 3 succesive verts on the C_5 or we get a claw. If *y* is adj. to 4 or 5 cycle verts, we get a d_1 -choosable subgraph.

Borodin-Kostochka Conjecture

- Borodin-Kostochka Conjecture
- List version of B-K Conjecture

- Borodin-Kostochka Conjecture
- List version of B-K Conjecture
 - ▶ Recently proved for large ∆ by Choi, Kierstead, Rabern, and Reed

- Borodin-Kostochka Conjecture
- List version of B-K Conjecture
 - ▶ Recently proved for large ∆ by Choi, Kierstead, Rabern, and Reed
- List version of B-K for claw-free graphs

- Borodin-Kostochka Conjecture
- List version of B-K Conjecture
 - ▶ Recently proved for large ∆ by Choi, Kierstead, Rabern, and Reed
- List version of B-K for claw-free graphs
 - Our reduction from claw-free to quasi-line graphs still works for list coloring

- Borodin-Kostochka Conjecture
- List version of B-K Conjecture
 - ▶ Recently proved for large ∆ by Choi, Kierstead, Rabern, and Reed
- List version of B-K for claw-free graphs
 - Our reduction from claw-free to quasi-line graphs still works for list coloring
 - We proved this for circular interval graphs

- Borodin-Kostochka Conjecture
- List version of B-K Conjecture
 - ▶ Recently proved for large ∆ by Choi, Kierstead, Rabern, and Reed
- List version of B-K for claw-free graphs
 - Our reduction from claw-free to quasi-line graphs still works for list coloring
 - We proved this for circular interval graphs
 - and line graphs of graphs with $\delta \geq 7$

- Borodin-Kostochka Conjecture
- List version of B-K Conjecture
 - ▶ Recently proved for large ∆ by Choi, Kierstead, Rabern, and Reed
- List version of B-K for claw-free graphs
 - Our reduction from claw-free to quasi-line graphs still works for list coloring
 - We proved this for circular interval graphs
 - and line graphs of graphs with $\delta \geq 7$
- Fractional version of B-K Conjecture

- Borodin-Kostochka Conjecture
- List version of B-K Conjecture
 - ▶ Recently proved for large ∆ by Choi, Kierstead, Rabern, and Reed
- List version of B-K for claw-free graphs
 - Our reduction from claw-free to quasi-line graphs still works for list coloring
 - We proved this for circular interval graphs
 - and line graphs of graphs with $\delta \geq 7$
- Fractional version of B-K Conjecture
 - 2-fold coloring version

Summary

Main Thm: The B-K Conj. is true for claw-free graphs, i.e., if G has no induced \triangleleft , $\Delta \ge 9$, and $\omega \le \Delta - 1$, then $\chi \le \Delta - 1$.

Key Idea: A minimal counterexample to B-K Conjecture cannot contain a d_1 -choosable graph as an induced subgraph.

- **First Step:** B-K Conj. is true for quasi-line graphs.
- ► Key Lemma: If G is claw-free, but not quasi-line, and G is a minimal counterexample to the B-K Conjecture, then G contains a vertex v such that N(v) is a thickening of C₅.

Final Step: Since G is claw-free, nbrs of verts in thickening attach in a structured way, so we get a d₁-choosable subgraph.