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Abstract

In k-bootstrap percolation, we fix p ∈ (0, 1), an integer k, and a plane graph G. Initially, we
infect each face of G independently with probability p. Infected faces remain infected forever,
and if a healthy (uninfected) face has at least k infected neighbors, then it becomes infected.
For fixed G and p, the percolation threshold is the largest k such that eventually all faces become
infected, with probability at least 1/2. For many infinite graphs, we show that this threshold is
independent of p.

We consider bootstrap percolation in tilings of the plane by regular polygons. A vertex type vertex type

in such a tiling is the cyclic order of the faces that meet a common vertex. First, we determine
the percolation threshold for each of the Archimedean lattices. More generally, let T denote
the set of plane tilings T by regular polygons such that if T contains one instance of a vertex
type, then T contains infinitely many instances of that type. We show that no tiling in T has
threshold 4 or more. Further, the only tilings in T with threshold 3 are four of the Archimedean
lattices. Finally, we describe a large subclass of T with threshold 2.

1 Introduction

In k-bootstrap percolation, we fix p ∈ (0, 1), an integer k, and a plane graph G. Initially, we
infect each face of G independently with probability p; call the set of initially infected faces I.
Infected faces remain infected forever, and if a healthy (uninfected) face has at least k infected
neighbors, then it becomes infected. We say that I percolates I percolatesif eventually all faces become
infected. For short, we call this the k-bootstrap model k-bootstrap

model
. For fixed G and p, the percolation

threshold1, or simply threshold
threshold

, is the largest k such that in the k-bootstrap model I percolates
with probability at least 1/2. For a large class of infinite graphs, we show that the threshold is
independent of p.

The k-bootstrap model has a long, rich history. Introduced by Chalupa, Leath, and Reich
[11] in 1979 as a way to model magnetic materials, it is an example of a monotone cellular
automata (introduced by von Neumann [18] in 1966). Most of the work in this field has focused
on finding thresholds for growing families of graphs. For example, if we infect each face of the
n× n square grid independently with some probability p, how large must p be so the infection
percolates almost surely, as n → ∞? The answer to this question, and the first sharp result in
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1Note that this is different than the probability thresholds often considered for sequences of finite graphs.
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the area, was proved by Holroyd [14]. While Holroyd’s result is striking on its own, it has been
extended greatly: studying the problem in higher dimensions, finding more terms of the critical
probability function, and much more (see, e.g., [1, 2, 3, 9, 10]). These bootstrap models have
been generalized significantly in recent years, with the advent of graph bootstrap percolation [8].

Outside the realm of grids, bootstrap percolation has been studied on many different families
of graphs. This includes work determining critical probabilities for random regular graphs [6],
the Erdős-Renyi random graph Gn,p [13, 15], the hypercube [4], infinite trees [5], and others.
Largely ignored, however, has been percolation on infinite lattices (aside from the square lattice
[16, 17], discussed below). We explore this direction here.

The length lengthof a face of a plane graph is its number of sides. A configuration
configuration

is a finite
plane graph. A configuration H appears in G

appears in G

if there is a map from faces of H to faces of
G that preserves both face length and the number of edges shared by every pair of faces.
When H appears in G, we also say that G contains a copy of H contains a

copy of H
. The following observation is

straightforward, but it is our main tool for proving upper bounds on percolation thresholds.

Observation 1. Let C be a configuration such that each face of C has at most k neighboring

faces outside C. If G contains infinitely many copies of C, then G has percolation threshold at

most k.

Proof. Suppose we are in the (k + 1)-bootstrap model. Note that if some copy of C has no
initially infected face, then I does not percolate, since no face in that copy of C ever becomes
infected. Since G has infinitely many copies of C (and each face of G is infected independently),
with probability 1 at least one copy of C in G has no face initially infected. So, in the (k + 1)-
bootstrap model, I percolates with probability 0.

An immediate consequence of Observation 1 is that the (infinite) square lattice has percola-
tion threshold at most 2, since we can take as our configuration C four square faces that meet
at a common vertex. van Enter [17] famously proved a matching lower bound. That is, the
percolation threshold of the square lattice is 2. In this note, we extend this result, using the
same approach, to determine the percolation thresholds for many tilings of the plane by regular
polygons. Beyond this, we prove that, somewhat surprisingly, for a large class of graphs (those
whose vertex types repeat infinitely often) the percolation threshold is never more than four,
and the only tilings achieving this are Archemidean lattices. We also determine a large class of
tilings for which the threshold is exactly two.

2 Archimedean Lattices

A function f : R2 → R
2 on a tiling is a tiling translation tiling

translation
if it has the form f : (x, y) 7→ (x+a, y+b)

for some a, b ∈ R and it maps the center of every d-gon to the center of a d-gon. These
are simply translations of the plane which map our polygons to congruent polygons. As an
example, for any a, b ∈ Z, f : (x, y) 7→ (x + a, y + b) is a tiling translation for the (unit)
square lattice, but is not a tiling translation for the hex lattice when a and b are both nonzero,
since the height of a regular hexagon, with one side axis-aligned, is not a rational multiple of
its width. An event E is called translation-invariant translation-

invariant
if for every initially infected set I and

every tiling translation f we have f(I) ∈ E if and only if I ∈ E. For example, the event
E1 = {I : I percolates to the entire plane} is translation invariant; if a set I percolates, it will
certainly also percolate when that set is translated to another location in the plane, since our
percolation process is independent of a face’s location in the plane. At the other extreme, as an
example of a non-translation-invariant event consider E2 = {I : I infects the origin eventually}.
Let I2 = {only the face containing the origin is infected}. Now I2 ∈ E, but for any nontrivial
tiling translation f we have f(I2) /∈ E2. An event is weakly translation-invariant

weakly
translation-
invariantif there exist

infinitely many distinct tiling translations f such that for each initially infected set I we have
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f(I) ∈ E if and only if I ∈ E. Our main tool for proving lower bounds on percolation thresholds
is the following lemma of Kolmogorov about translation invariant events. This result is quite
general, so we state it in a simple form which is enough for our purposes.

Kolmogorov’s 0–1 Law. Let T be an infinite graph that is locally finite. If E is a weakly

translation-invariant event, then Pr(E) ∈ {0, 1}.

The proof is not hard, but requires enough machinery that we do not reproduce it here. Nev-
ertheless, this lemma is crucial to our work, so we give a brief description for the probabilistically-
minded reader. Our probability space is constructed as a countable product space (whose fun-
damental events are whether or not individual faces are infected). As such, any event – in
particular, our ‘initial set percolates’ event – can be approximated arbitrarily well by a cylin-
der set (all hexagons within some fixed distance of a specified hexagon). Since we have weak
translation-invariance, if we translate sufficiently far we can find another approximating cylinder
set which is disjoint from the first; thus, events within one cylinder set are independent of those
within the other. By repeating this process, we find infinitely many disjoint copies of our approx-
imating cylinder set. Each of these translations of our cylinder is initially entirely infected with
positive probability. Hence, with probability one, at least one of these approximating events
will occur2.

To show that the square lattice has threshold 2, Chalupa, Leath, and Reich [11] defined an
event A with the following three properties: (1) if A occurs, then in the 2-bootstrap model the
initially infected set I percolates on the square lattice, (2) A occurs with positive probability,
and (3) A is translation invariant. Properties (1) and (2) clearly imply that in the 2-bootstrap
model on the square lattice, I percolates with positive probability. Now Kolmogorov’s 0–1 Law
shows that this probability is 1.

An Archimedean Lattice Archimedean
Lattice

is a vertex transitive (infinite) plane graph in which each face is a
regular polygon. It is well-known that there are 11 such lattices3, including the three regular
tilings (by the triangle, square, and hexagon). To describe an Archimedean Lattice, we write
(f1. . . . fs), where f1, . . . , fs are the face lengths, in cyclic order, that meet at each vertex. For
instance, the regular tilings by triangle, square, and hexagon are denoted (3.3.3.3.3.3), (4.4.4.4),
and (6.6.6). In Figure 1 we show the other eight Archimedean Lattices, along with configurations
that bound their percolation thresholds, via Observation 1. Clearly, every lattice has percolation
threshold at least 1. For lattices (3.3.3.3.3.3), (3.3.3.3.3.6), (3.3.3.4.4), (3.3.4.3.4), and (3.4.6.4)
we obtain a matching upper bound, using Observation 1 and the configurations in Figure 1. For
(3.6.3.6) our upper bound is 2, and for each of (3.12.12), (4.6.12), (4.8.8), and (6.6.6) it is 3.
So, to determine the bootstrap threshold for each of these five lattices, the interesting work is
proving a matching lower bound. We first present a proof for (4.8.8). Since the proofs of all five
lower bounds are similar, we will just outline the differences for the remaining four lattices.

Theorem 1. For every p ∈ (0, 1), the percolation threshold for the lattice (4.8.8) is 3.

Proof. By applying Observation 1, using the configuration in Figure 1, we get an upper bound
of 3. So we need only to prove a matching lower bound.

We draw (4.8.8) so each 8-gon has its center at a lattice point (and each lattice point is
the center of an 8-gon). We fix p ∈ (0, 1), and initially infect each face independently with
probability p. Call this set of initially infected faces I I. We show that in the 3-bootstrap model
I percolates with positive probability. Let Dt Dtdenote the set of faces with centers at (x, y) such
that |x| ≤ t and |y| ≤ t. So Dt contains (2t + 1)2 8-gons and (2t)2 squares.

Suppose that all faces in Dt are infected. We want to prove a lower bound on the probability
that eventually all faces in Dt+1 become infected. Suppose that some infected face f is adjacent
to a face in the top row of 8-gons of Dt. Now the infection at f will spread to every face in the

2The details are available, for example, in [7, p. 118ff.].
3At the start of Section 3, we outline a proof of this fact.
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same row as f that is adjacent to some face in Dt. This spread happens as follows. First, we
infect the two 4-gons that are adjacent to f and also each have two neighbors in Dt. Now we

(3.12.12) 3 (4.6.12) 3

(4.8.8) 3 (3.6.3.6) 2

(3.4.6.4) 1 (3.3.3.3.6) 1

(3.3.4.3.4) 1 (3.3.3.4.4) 1

Figure 1: The 8 non-regular Archimedean lattices, along with the configurations used to prove upper
bounds on their percolation thresholds.
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Figure 2: The order in which faces in the next row become infected, when proving that the lattice
(3.6.3.6) has threshold 2 and that the lattice (4.6.12) has threshold 3.

infect each 8-gon f ′ that is adjacent to f and also adjacent to a face Dt (since f ′ is also adjacent
to an infected 4-gon). By repeating this argument with f ′ in place of f , we see that the infection
spreads along the row above the top row of Dt (to the full width of Dt, which is 2t + 1). Since
each face in the row just above Dt is initially infected with probability p, the probability that
none is infected is (1 − p)2t+1. The same argument applies to the row beneath the bottom of
Dt and to the columns to the left and right of Dt. So the probability that at least one of these
two rows and two columns has no infected face is at most 4(1 − p)2t+1. If we infect all of both
columns and both rows, then we also infect each square with exactly one neighbor in Dt (these
are at the corners). Finally, we infect each corner 8-gon, since it now has two adjacent infected
8-gons and one adjacent infected square. Thus, all of Dt+1 becomes infected.

For each s ≥ 0, call Ds+1 \Ds a ring ringaround D0. We partition the faces of each ring into top
and bottom rows, left and right columns, and four corners. To infect the whole plane, it is enough
to have all faces in Dt infected (for some t) and for each s ≥ t to have at least one infected face in
each of its top and bottom rows and right and left columns. The probability of having at least one
ring without the necessary infected faces is at most

∑
s≥t 4(1−p)2s+1 = 4(1−p)2t+1/(1−(1−p)2).

For t sufficiently large, this probability is less than 1. The probability that every 8-gon in Dt is
initially infected is p(2t+1)2 ; if the 8-gons are all infected, then the squares immediately become
infected. Since each face is infected independently, the probability of infecting the whole plane
is at least p(2t+1)2(1−4(1−p)2t+1)/(1− (1−p)2), which is positive for t sufficiently large. So, in
the 3-bootstrap model, with positive probability, the whole plane becomes infected. Now we use
Kolmogorov’s 0–1 Law to show that, in fact, the whole plane becomes infected with probability
1. To apply the 0–1 Law, we only need to note that the event that the initial set I percolates
is weakly translation-invariant.

The proofs of the lower bounds for (3.6.3.6), (4.6.12), and (6.6.6) are similar. The only
noticeable difference is the shapes of the sets analogous to Dt and the details of how Dt grows
to Dt+1 when we have at least one infected face on each side of the ring Dt+1 \ Dt. In each
case, the shape of the set Dt is closer to a hexagon than a square, so the ring Dt+1 \ Dt has six
sides, rather than four; this is most obvious for (6.6.6). In Figure 2 we show examples of how
one side of Dt grows to Dt+1 for (3.6.3.6) and (4.6.12). The faces marked with × are already
infected, and the integers denote the order that new faces become infected. For (4.6.12), the
faces labeled 0 become infected immediately, since each has three infected neighbors.

The fact that (3.12.12) has bootstrap threshold at least 3 follows directly from the fact that
(6.6.6) does. We inflate each 12-gon in (3.12.12) to include one third of each incident triangle.
This produces (6.6.6), as shown in Figure 3. When we inflate a 12-gon, it does not become
incident to any new face. Since (6.6.6) has threshold 3, we conclude that in the 3-bootstrap
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Figure 3: Inflating 12-gons to hexagons shows that (3.12.12) has threshold at least 3, since (6.6.6)
has threshold 3.

model, with probability 1 every 12-gon in (3.12.12) becomes infected. And once the three 12-
gons incident to a triangle become infected, so does the triangle. Thus, (3.12.12) has threshold
at least 3. Finally, recall that the lattice (4.4.4.4) has threshold 2. (This was proved by van
Enter [17]; it is this proof which inspired the present paper.)

3 More General Tilings

In a plane tiling by regular polygons, the vertex type for a vertex v is the cyclicly ordered list
of the lengths of faces that meet at v. Since the interior angle of a regular t-gon is known (its
measure in degrees is 180(t− 2)/t), determining the set of all possible vertex types is a simple
exercise in diophantine equations. Up to reflection, we have 21 types. These are 3.3.3.3.3.3,
3.3.3.3.6, 3.3.3.4.4, 3.3.4.3.4, 3.3.6.6, 3.6.3.6, 3.3.4.12, 3.4.3.12, 3.4.4.6, 3.4.6.4, 4.4.4.4, 3.7.42,
3.8.24, 3.9.18, 3.10.15, 3.12.12, 4.5.20, 4.6.12, 4.8.8, 5.5.10, 6.6.6. (Analyzing these 21 possibili-
ties gives a straightforward, albeit tedious, proof that there are only 11 Archimedean lattices.)
Grünbaum and Shephard [12] give nice pictures of the 21 types, as well as many plane tilings
by regular polygons.

Let T denote the set of plane tilings such that if T ∈ T and some vertex type appears in T ,
then that type appears in T infinitely often. It is easy to see that T contains more tilings than
just the Archimedean Lattices. A portion of such a tiling is shown in Figure 5. We prove the
following.

Main Theorem. No tiling in T has threshold 4 or more, and the only tilings in T with threshold

3 are the lattices (3.12.12), (4.6.12), (4.8.8), and (6.6.6).

Proof. Fix T ∈ T . As a warmup, we show that T has threshold at most 4. Suppose T has a
vertex v of type other than 5.5.10 and 6.6.6. Note, by examining the 21 types above, that v
has an incident 3-face or 4-face. So, by definition, T has infinitely many 3-faces or 4-faces. Now
Observation 1 shows that T has threshold at most 4. As we show in the next paragraph, type
5.5.10 cannot appear in any plane tiling. Finally, if T has only vertex type 6.6.6, then T is the
lattice (6.6.6), which has threshold 3.

The rest of the proof simply refines the idea in the previous paragraph. We first show that
six types cannot appear in T at all. Suppose that T contains a vertex of type 3.7.42. Since no
other type contains 7-gons or 42-gons, the lengths of faces incident to this 3-gon must alternate
between 7 and 42. But this is impossible, since 3 is odd. So T contains no vertex of type 3.7.42.
Similar arguments show that T contains no vertex of any of types 3.8.24, 3.9.18, 3.10.15, 4.5.20,
and 5.5.10.
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For the remaining types t other than 3.6.3.6, 3.12.12, 4.6.12, 4.8.8, and 6.6.6, we show that
if T contains type t, then T contains a configuration H where each face of H has at most 2
adjacent faces outside H . Since H appears infinitely often, by Observation 1 the threshold of T
is at most 2, as desired. The details follow.

If T contains two adjacent triangles, then we take these as H . This handles six types, leaving
only 3.4.4.6, 3.4.6.4, 3.4.3.12, and 4.4.4.4. If v has type 4.4.4.4, then H is its four incident squares.
If v has type 3.4.3.12, then H is the two incident triangles and the incident square. If v has
type 3.4.4.6, then a short analysis shows that T contains one of the configurations on the left
in Figure 4. Finally, if v has type 3.4.6.4, then a (slightly longer) proof shows that T contains
the configuration on the right in Figure 4 (or else contains two triangles linked by one or two
squares, similar to the cases on the left of Figure 4).

Figure 4: Left: The three possibilities for C when T contains a vertex of type 3.4.4.6. Right: A
configuration, C, of 31 faces in which each face has at most two neighbors outside C.

The remaining types to consider are 3.6.3.6, 3.12.12, 4.6.12, 4.8.8, and 6.6.6. To see that T
must be an Archimedean lattice, note that none of these types agree in two or more successive
face lengths. So it is impossible for T to “switch” from one type to another.

It is worth noting that we cannot relax the hypothesis in the Main Theorem to require only
that some vertex type appears infinitely often. For example, suppose we start with the hex
lattice and replace finitely many hexagons each with 6 triangles. If any of the resulting vertices
of type 3.3.3.3.3.3 has no incident faces initially infected, then the percolation threshold drops
from 3 to 1. Hence, the percolation threshold depends heavily on p, the probability that each
face is initially infected.

To conclude, we briefly discuss a family of tilings we call Tstrips. These tilings are formed
by “stacking” infinite horizontal strips of polygons above and below each other to fill the entire
plane. The two types of strips that we use are hex strips hex strips, consisting of hexagons and triangles,
and square strips square strips, consisting just of squares. Figure 5 shows an example. Since the hex strips
can be shifted left or right, this family contains uncountably many tilings.

Despite the variety in the tilings of Tstrips, they all have the same threshold. The proof is
similar to our proof for the lattice (4.8.8), with a little difficulty added by the irregularly shaped
rings we use now (what were previously Dt+1 \ Dt). Two hex strips are offset offsetif the centers of
their hexagons are not directly above one another.

Theorem 2. Every tiling in Tstrips has percolation threshold 2.

Proof. Let T be a tiling in Tstrips. Again the upper bound follows from Observation 1. The
main step is to show that T contains a configuration C such that each face of C has at most
two adjacent faces outside C. A short analysis yields that T contains infinitely many copies of
one of the following: (a) adjacent triangles, (b) a hexagon with six adjacent triangles, (c) four

7



Figure 5: A tiling in Tstrips, along with a marked face and A4.

squares incident to a common vertex, (d) two triangles adjacent to a common square, or (e) two
triangles linked by two squares (as in Figure 4).

Now we show that for every p with 0 < p < 1, if k = 2, then our random set I percolates
with positive probability. By combining this with the 0–1 Law, we conclude that the bootstrap
threshold for T is 2.

First we must find an analogue of Dt from our proof for the lattice (4.8.8). Consider a face f f

of T which is not a triangle. We let At Atdenote a collection of faces that is centered on f and that
is shaped somewhere between a square and a hexagon (depending on the number of offset rows
involved). In the strip containing f , At contains 2t consecutive faces to the left of f (including
triangles), and 2t consecutive faces to the right of f . For the strip above this, At contains the
faces directly above, if the two strips are not offset, and the faces above and slightly towards
the center, if the strips are offset. Similarly for the strip below, At contains the faces directly
below if the two strips are not offset, and the faces below and slightly toward the center when
the faces are offset. We continue this for the t rows above f and the t rows below f . This means
that At always consists of 2t + 1 rows of faces, but the number of faces in the rows decreases
slightly as we move away from the center row (whenever successive strips are offset).

Now At looks like a square when it has no offset strips, and looks closer to a hexagon when
it has many. Even when At looks like a rectangle, we think of At+1 \ At as having six sides.
The top and bottom sides are easy to see; they consist of faces directly above/below the faces
in the top/bottom row of At. The top-left side consists of faces directly left of an end-face of
At and which are in a strip above f . The bottom-left, top-right, and top-left sides are defined
similarly.

The key insight is that, just like for the lattice (4.8.8), if At is infected and At+1 \ At has
even a single infected (non-triangular) face in one of its sides, then that entire side becomes
infected. By repeatedly applying this idea, we see that the infection spreads along the entire
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top-left side. Once two adjacent sides are infected (e.g. top-left and top, or bottom-right and
top-right), the corner face lying between them also has two infected neighbors, so it becomes
infected. The important consequence of all this is the following. If At is completely infected,
and at least one face on each of the six sides of At+1 \ At is infected, then At+1 also becomes
completely infected.

Now we bound the probability that this happens. Each side has at least t non-triangular
faces4, so the probability that none of the faces on a side are infected is at most (1− p)t. Thus,
the probability that at least one side of At+1 \At has no infected face is no more than 6(1−p)t.

Now our argument exactly follows that for (4.8.8). The probability that at least one ring

around At does not become infected is at most
∑∞

j=0 6(1−p)t+j = 6(1−p)t

p
, and for large enough

t we have 6(1−p)t

p
< 1. Now the probability that At is initially entirely infected and that every

ring around At contains an infected face on each of the six sides is p|At|(1− 6(1−p)t

p
) > 0. Since

this event is translation-invariant in the horizontal direction, it is weakly translation-invariant.
So the 0–1 Law tells us that I percolates with probability 1.
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We are indebted to Branko Grünbaum and Geoffrey Shephard for their article Tilings by Regular

Polygons [12], which inspired much of this work. Thanks also to one of our referees, whose
feedback helped improve our presentation.

References

[1] M. Aizenman and J. L. Lebowitz. Metastability effects in bootstrap percolation. J. Phys.

A, 21(19):3801–3813, 1988.

[2] J. Balogh, B. Bollobás, H. Duminil-Copin, and R. Morris. The sharp threshold for bootstrap
percolation in all dimensions. Trans. Amer. Math. Soc., 364(5):2667–2701, 2012.

[3] J. Balogh, B. Bollobás, and R. Morris. Bootstrap percolation in three dimensions. Ann.

Probab., 37(4):1329–1380, 2009.

[4] J. Balogh, B. Bollobás, and R. Morris. Majority bootstrap percolation on the hypercube.
Combin. Probab. Comput., 18(1-2):17–51, 2009.

[5] J. Balogh, Y. Peres, and G. Pete. Bootstrap percolation on infinite trees and non-amenable
groups. Combin. Probab. Comput., 15(5):715–730, 2006.

[6] J. Balogh and B. G. Pittel. Bootstrap percolation on the random regular graph. Random

Structures Algorithms, 30(1-2):257–286, 2007.

[7] B. Bollobás and O. Riordan. Percolation. Cambridge University Press, New York, 2006.

[8] B. Bollobás, P. Smith, and A. Uzzell. Monotone cellular automata in a random environment.
Combin. Probab. Comput., 24(4):687–722, 2015.

[9] R. Cerf and E. Cirillo. Finite size scaling in three-dimensional bootstrap percolation. Ann.
Probab., 27(4):1837–1850, 1999.

[10] R. Cerf and F. Manzo. The threshold regime of finite volume bootstrap percolation. Stochas-
tic Process. Appl., 101(1):69–82, 2002.

4 When At contains two successive hex strips that are offset, the row further from f contributes to At two fewer
faces than the row nearer f (including one fewer hex face). Thus, the top and bottom sides can each have as many
as 2t+1 adjacent non-triangular faces. But, this only helps us, since a side with more faces is more likely to have an
infected face.

9



[11] J. Chalupa, P. Leath, and G. R. Reich. Bootstrap percolation on a bethe lattice. J. Phys.

C: Solid State Phys., (12):L31–L35, 1979.
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